About to change the proof of waiting_unique_pre and waiting_unqie.
theory Moment
imports Main
begin
definition moment :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
where "moment n s = rev (take n (rev s))"
value "moment 3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9::int]"
value "moment 2 [5, 4, 3, 2, 1, 0::int]"
lemma moment_app [simp]:
assumes ile: "i \<le> length s"
shows "moment i (s' @ s) = moment i s"
using assms unfolding moment_def by simp
lemma moment_eq [simp]: "moment (length s) (s' @ s) = s"
unfolding moment_def by simp
lemma moment_ge [simp]: "length s \<le> n \<Longrightarrow> moment n s = s"
by (unfold moment_def, simp)
lemma moment_zero [simp]: "moment 0 s = []"
by (simp add:moment_def)
lemma least_idx:
assumes "Q (i::nat)"
obtains j where "j \<le> i" "Q j" "\<forall> k < j. \<not> Q k"
using assms
by (metis ex_least_nat_le le0 not_less0)
lemma duration_idx:
assumes "\<not> Q (i::nat)"
and "Q j"
and "i \<le> j"
obtains k where "i \<le> k" "k < j" "\<not> Q k" "\<forall> i'. k < i' \<and> i' \<le> j \<longrightarrow> Q i'"
proof -
let ?Q = "\<lambda> t. t \<le> j \<and> \<not> Q (j - t)"
have "?Q (j - i)" using assms by (simp add: assms(1))
from least_idx [of ?Q, OF this]
obtain l
where h: "l \<le> j - i" "\<not> Q (j - l)" "\<forall>k<l. \<not> (k \<le> j \<and> \<not> Q (j - k))"
by metis
let ?k = "j - l"
have "i \<le> ?k" using assms(3) h(1) by linarith
moreover have "?k < j" by (metis assms(2) diff_le_self h(2) le_neq_implies_less)
moreover have "\<not> Q ?k" by (simp add: h(2))
moreover have "\<forall> i'. ?k < i' \<and> i' \<le> j \<longrightarrow> Q i'"
by (metis diff_diff_cancel diff_le_self diff_less_mono2 h(3)
less_imp_diff_less not_less)
ultimately show ?thesis using that by metis
qed
lemma p_split_gen:
assumes "Q s"
and "\<not> Q (moment k s)"
shows "(\<exists> i. i < length s \<and> k \<le> i \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
proof(cases "k \<le> length s")
case True
let ?Q = "\<lambda> t. Q (moment t s)"
have "?Q (length s)" using assms(1) by simp
from duration_idx[of ?Q, OF assms(2) this True]
obtain i where h: "k \<le> i" "i < length s" "\<not> Q (moment i s)"
"\<forall>i'. i < i' \<and> i' \<le> length s \<longrightarrow> Q (moment i' s)" by metis
moreover have "(\<forall> i' > i. Q (moment i' s))" using h(4) assms(1) not_less
by fastforce
ultimately show ?thesis by metis
qed (insert assms, auto)
lemma p_split:
assumes qs: "Q s"
and nq: "\<not> Q []"
shows "(\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
proof -
from nq have "\<not> Q (moment 0 s)" by simp
from p_split_gen [of Q s 0, OF qs this]
show ?thesis by auto
qed
lemma moment_Suc_tl:
assumes "Suc i \<le> length s"
shows "tl (moment (Suc i) s) = moment i s"
using assms
by (simp add:moment_def rev_take,
metis Suc_diff_le diff_Suc_Suc drop_Suc tl_drop)
lemma moment_Suc_hd:
assumes "Suc i \<le> length s"
shows "hd (moment (Suc i) s) = s!(length s - Suc i)"
by (simp add:moment_def rev_take,
subst hd_drop_conv_nth, insert assms, auto)
lemma moment_plus:
assumes "Suc i \<le> length s"
shows "(moment (Suc i) s) = (hd (moment (Suc i) s)) # (moment i s)"
proof -
have "(moment (Suc i) s) \<noteq> []" using assms
by (simp add:moment_def rev_take)
hence "(moment (Suc i) s) = (hd (moment (Suc i) s)) # tl (moment (Suc i) s)"
by auto
with moment_Suc_tl[OF assms]
show ?thesis by metis
qed
end