--- a/Max.thy Fri Oct 07 21:15:35 2016 +0100
+++ b/Max.thy Fri Oct 21 14:47:01 2016 +0100
@@ -75,4 +75,76 @@
qed
+lemma Max_fg_mono:
+ assumes "finite A"
+ and "\<forall> a \<in> A. f a \<le> g a"
+ shows "Max (f ` A) \<le> Max (g ` A)"
+proof(cases "A = {}")
+ case True
+ thus ?thesis by auto
+next
+ case False
+ show ?thesis
+ proof(rule Max.boundedI)
+ from assms show "finite (f ` A)" by auto
+ next
+ from False show "f ` A \<noteq> {}" by auto
+ next
+ fix fa
+ assume "fa \<in> f ` A"
+ then obtain a where h_fa: "a \<in> A" "fa = f a" by auto
+ show "fa \<le> Max (g ` A)"
+ proof(rule Max_ge_iff[THEN iffD2])
+ from assms show "finite (g ` A)" by auto
+ next
+ from False show "g ` A \<noteq> {}" by auto
+ next
+ from h_fa have "g a \<in> g ` A" by auto
+ moreover have "fa \<le> g a" using h_fa assms(2) by auto
+ ultimately show "\<exists>a\<in>g ` A. fa \<le> a" by auto
+ qed
+ qed
+qed
+
+lemma Max_f_mono:
+ assumes seq: "A \<subseteq> B"
+ and np: "A \<noteq> {}"
+ and fnt: "finite B"
+ shows "Max (f ` A) \<le> Max (f ` B)"
+proof(rule Max_mono)
+ from seq show "f ` A \<subseteq> f ` B" by auto
+next
+ from np show "f ` A \<noteq> {}" by auto
+next
+ from fnt and seq show "finite (f ` B)" by auto
+qed
+
+lemma Max_UNION:
+ assumes "finite A"
+ and "A \<noteq> {}"
+ and "\<forall> M \<in> f ` A. finite M"
+ and "\<forall> M \<in> f ` A. M \<noteq> {}"
+ shows "Max (\<Union>x\<in> A. f x) = Max (Max ` f ` A)" (is "?L = ?R")
+ using assms[simp]
+proof -
+ have "?L = Max (\<Union>(f ` A))"
+ by (fold Union_image_eq, simp)
+ also have "... = ?R"
+ by (subst Max_Union, simp+)
+ finally show ?thesis .
+qed
+
+lemma max_Max_eq:
+ assumes "finite A"
+ and "A \<noteq> {}"
+ and "x = y"
+ shows "max x (Max A) = Max ({y} \<union> A)" (is "?L = ?R")
+proof -
+ have "?R = Max (insert y A)" by simp
+ also from assms have "... = ?L"
+ by (subst Max.insert, simp+)
+ finally show ?thesis by simp
+qed
+
+
end