--- a/Test.thy Thu Jun 12 10:14:50 2014 +0100
+++ b/Test.thy Tue Jul 15 17:25:53 2014 +0200
@@ -39,6 +39,9 @@
definition preced :: "thread \<Rightarrow> state \<Rightarrow> precedence"
where "preced th s \<equiv> Prc (priority th s) (last_set th s)"
+abbreviation
+ "preceds s ths \<equiv> {preced th s | th. th \<in> ths}"
+
definition
"holds wq th cs \<equiv> th \<in> set (wq cs) \<and> th = hd (wq cs)"
@@ -504,30 +507,34 @@
ultimately show "False" by metis
qed
-lemma max_cpreceds_readys_threads:
- assumes vt: "vt s"
- shows "Max (cpreceds2 s (readys s)) = Max (cpreceds2 s (threads s))"
-apply(case_tac "threads s = {}")
-apply(simp add: readys_def)
-using vt
-apply(induct)
-apply(simp)
-apply(erule step.cases)
-apply(auto simp add: readys_def waits2_def waits_def Let_def holding_def runing_def holds2_def)
-defer
-defer
-oops
+lemma cpreced2_cpreced: "cpreced2 s th = cpreced (wq s) s th"
+unfolding cpreced2_def wq_def
+apply(induct s rule: schs.induct)
+apply(simp add: Let_def cpreced_def dependants_def RAG_def waits_def holds_def preced_def)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+done
+
+lemma cpreced_Exit:
+ shows "cpreced2 (Exit th # s) th' = cpreced2 s th'"
+by (simp add: cpreced2_cpreced cpreced_def preced_def wq_def Let_def)
lemma readys_Exit:
- shows "readys (Exit th # s) \<subseteq> readys s"
+ shows "readys (Exit th # s) = readys s - {th}"
by (auto simp add: readys_def waits2_def Let_def)
lemma readys_Create:
shows "readys (Create th prio # s) \<subseteq> {th} \<union> readys s"
-by (auto simp add: readys_def waits2_def Let_def)
+apply (auto simp add: readys_def waits2_def Let_def waits_def)
+done
lemma readys_Set:
- shows "readys (Set th prio # s) \<subseteq> readys s"
+ shows "readys (Set th prio # s) = readys s"
by (auto simp add: readys_def waits2_def Let_def)
@@ -549,20 +556,232 @@
apply(auto simp add: readys_def waits2_def waits_def Let_def wq_def)
done
-lemma
+
+fun the_th :: "node \<Rightarrow> thread"
+ where "the_th (Th th) = th"
+
+lemma image_Collect2:
+ "f ` A = {f x | x. x \<in> A}"
+apply(auto)
+done
+
+lemma Collect_disj_eq2:
+ "{f x | x. x = y \<or> x \<in> A} = {f y} \<union> {f x | x. x \<in> A}"
+by (auto)
+
+lemma last_set_lt:
+ "th \<in> threads s \<Longrightarrow> last_set th s < length s"
+ apply(induct rule: threads.induct)
+ apply(auto)
+ done
+
+lemma last_set_eq_iff:
+ assumes "th1 \<in> threads s" "th2 \<in> threads s"
+ shows "last_set th1 s = last_set th2 s \<longleftrightarrow> th1 = th2"
+ using assms
+ apply(induct s rule: threads.induct)
+ apply(auto split:if_splits dest:last_set_lt)
+ done
+
+lemma preced_eq_iff:
+ assumes th_in1: "th1 \<in> threads s"
+ and th_in2: "th2 \<in> threads s"
+ shows "preced th1 s = preced th2 s \<longleftrightarrow> th1 = th2"
+using assms
+by (auto simp add: preced_def last_set_eq_iff)
+
+lemma dm_RAG_threads:
+ assumes vt: "vt s"
+ and in_dom: "(Th th) \<in> Domain (RAG2 s)"
+ shows "th \<in> threads s"
+proof -
+ from in_dom obtain n where a: "(Th th, n) \<in> RAG2 s" by auto
+ then obtain cs where "n = Cs cs"
+ unfolding RAG2_def RAG_def
+ by auto
+ then have "(Th th, Cs cs) \<in> RAG2 s" using a by simp
+ hence "th \<in> set (wq s cs)"
+ unfolding RAG2_def wq_def RAG_def waits_def
+ by (auto)
+ then show ?thesis
+ apply(rule_tac wq_threads)
+ apply(rule assms)
+ apply(simp)
+ done
+qed
+
+lemma cpreced_eq_iff:
+ assumes "th1 \<in> readys s" "th2 \<in> readys s" "vt s"
+ shows "cpreced2 s th1 = cpreced2 s th2 \<longleftrightarrow> th1 = th2"
+proof
+ def S1\<equiv>"({th1} \<union> dependants (wq s) th1)"
+ def S2\<equiv>"({th2} \<union> dependants (wq s) th2)"
+ have fin: "finite ((the_th o fst) ` ((RAG (wq s))\<^sup>+))"
+ apply(rule)
+ apply(simp add: finite_trancl)
+ apply(simp add: wq_def)
+ apply(rule finite_RAG[simplified RAG2_def])
+ apply(rule assms)
+ done
+
+ from fin have h: "finite (preceds s S1)" "finite (preceds s S2)"
+ apply(simp_all add: S2_def S1_def Collect_disj_eq2 image_Collect[symmetric])
+ apply(rule)
+ apply(simp add: dependants_def)
+ apply(rule rev_finite_subset)
+ apply(assumption)
+ apply(auto simp add: image_def)[1]
+ apply(metis fst_conv the_th.simps)
+ apply(rule)
+ apply(simp add: dependants_def)
+ apply(rule rev_finite_subset)
+ apply(assumption)
+ apply(auto simp add: image_def)[1]
+ apply(metis fst_conv the_th.simps)
+ done
+ moreover have "S1 \<noteq> {}" "S2 \<noteq> {}" by (simp_all add: S1_def S2_def)
+ then have "(preceds s S1) \<noteq> {}" "(preceds s S2) \<noteq> {}" by simp_all
+ ultimately have m: "Max (preceds s S1) \<in> (preceds s S1)" "Max (preceds s S2) \<in> (preceds s S2)"
+ apply(rule_tac [!] Max_in)
+ apply(simp_all)
+ done
+
+ assume q: "cpreced2 s th1 = cpreced2 s th2"
+ then have eq_max: "Max (preceds s S1) = Max (preceds s S2)"
+ unfolding cpreced2_cpreced cpreced_def
+ apply(simp only: S1_def S2_def)
+ apply(simp add: Collect_disj_eq2)
+ done
+
+ obtain th0 where th0_in: "th0 \<in> S1" "th0 \<in> S2" and
+ eq_f_th1: "preced th0 s = Max (preceds s S1)"
+ "preced th0 s = Max (preceds s S2)"
+ using m
+ apply(clarify)
+ apply(simp add: eq_max)
+ apply(subst (asm) (2) preced_eq_iff)
+ apply(insert assms(2))[1]
+ apply(simp add: S2_def)
+ apply(auto)[1]
+ apply (metis contra_subsetD readys_threads)
+ apply(simp add: dependants_def)
+ apply(subgoal_tac "Th tha \<in> Domain ((RAG2 s)^+)")
+ apply(simp add: trancl_domain)
+ apply (metis Domain_RAG_threads assms(3))
+ apply(simp only: RAG2_def wq_def)
+ apply (metis Domain_iff)
+ apply(insert assms(1))[1]
+ apply(simp add: S1_def)
+ apply(auto)[1]
+ apply (metis contra_subsetD readys_threads)
+ apply(simp add: dependants_def)
+ apply(subgoal_tac "Th th \<in> Domain ((RAG2 s)^+)")
+ apply(simp add: trancl_domain)
+ apply (metis Domain_RAG_threads assms(3))
+ apply(simp only: RAG2_def wq_def)
+ apply (metis Domain_iff)
+ apply(simp)
+ done
+ then show "th1 = th2"
+ apply -
+ apply(insert th0_in assms(1, 2))[1]
+ apply(simp add: S1_def S2_def)
+ apply(auto)
+ --"first case"
+ prefer 2
+ apply(subgoal_tac "Th th2 \<in> Domain (RAG2 s)")
+ apply(subgoal_tac "\<exists>cs. (Th th2, Cs cs) \<in> RAG2 s")
+ apply(erule exE)
+ apply(simp add: runing_def RAG2_def RAG_def readys_def waits2_def)[1]
+ apply(auto simp add: RAG2_def RAG_def)[1]
+ apply(subgoal_tac "Th th2 \<in> Domain ((RAG2 s)^+)")
+ apply (metis trancl_domain)
+ apply(subgoal_tac "(Th th2, Th th1) \<in> (RAG2 s)^+")
+ apply (metis Domain_iff)
+ apply(simp add: dependants_def RAG2_def wq_def)
+ --"second case"
+ apply(subgoal_tac "Th th1 \<in> Domain (RAG2 s)")
+ apply(subgoal_tac "\<exists>cs. (Th th1, Cs cs) \<in> RAG2 s")
+ apply(erule exE)
+ apply(insert assms(1))[1]
+ apply(simp add: runing_def RAG2_def RAG_def readys_def waits2_def)[1]
+ apply(auto simp add: RAG2_def RAG_def)[1]
+ apply(subgoal_tac "Th th1 \<in> Domain ((RAG2 s)^+)")
+ apply (metis trancl_domain)
+ apply(subgoal_tac "(Th th1, Th th2) \<in> (RAG2 s)^+")
+ apply (metis Domain_iff)
+ apply(simp add: dependants_def RAG2_def wq_def)
+ --"third case"
+ apply(rule dchain_unique)
+ apply(rule assms(3))
+ apply(simp add: dependants_def RAG2_def wq_def)
+ apply(simp)
+ apply(simp add: dependants_def RAG2_def wq_def)
+ apply(simp)
+ done
+next
+ assume "th1 = th2"
+ then show "cpreced2 s th1 = cpreced2 s th2" by simp
+qed
+
+lemma at_most_one_running:
assumes "vt s"
shows "card (runing s) \<le> 1"
proof (rule ccontr)
assume "\<not> card (runing s) \<le> 1"
then have "2 \<le> card (runing s)" by auto
moreover
- have "finite (runing s)" sorry
- ultimately obtain th1 th2 where "th1 \<noteq> th2" "th1 \<in> runing s" "th2 \<in> runing s"
- by (auto simp add: numerals card_le_Suc_iff) (blast)
+ have "finite (runing s)"
+ by (metis `\<not> card (runing s) \<le> 1` card_infinite le0)
+ ultimately obtain th1 th2 where a:
+ "th1 \<noteq> th2" "th1 \<in> runing s" "th2 \<in> runing s"
+ "cpreced2 s th1 = cpreced2 s th2"
+ apply(auto simp add: numerals card_le_Suc_iff runing_def)
+ apply(blast)
+ done
+ then have "th1 = th2"
+ apply(subst (asm) cpreced_eq_iff)
+ apply(auto intro: assms a)
+ apply (metis contra_subsetD runing_ready)+
+ done
+ then show "False" using a(1) by auto
+qed
- show "False"
-apply(simp)
-oops
+
+
+
+done
+ (*
+ obtain th0 where th0_in: "th0 \<in> S1 \<and> th0 \<in> S2"
+ and eq_f_th0: "preced th0 s = Max ((\<lambda>th. preced th s) ` (S1 \<inter> S2))"
+ proof -
+ from fin have h1: "finite ((\<lambda>th. preced th s) ` (S1 \<inter> S2))"
+ apply(simp only: S1_def S2_def)
+ apply(rule)
+ apply(rule)
+ apply(rule)
+ apply(simp add: dependants_def)
+ apply(rule rev_finite_subset)
+ apply(assumption)
+ apply(auto simp add: image_def)
+ apply (metis fst_conv the_th.simps)
+ done
+ moreover
+ have "S1 \<inter> S2 \<noteq> {}" apply (simp add: S1_def S2_def)
+ apply(auto)
+
+ done
+ then have h2: "((\<lambda>th. preced th s) ` (S1 \<union> S2)) \<noteq> {}" by simp
+ ultimately have "Max ((\<lambda>th. preced th s) ` (S1 \<union> S2)) \<in> ((\<lambda>th. preced th s) ` (S1 \<union> S2))"
+ apply(rule Max_in)
+ done
+ then show ?thesis using that[intro] apply(auto)
+
+ apply(erule_tac preced_unique)
+ done
+ qed
+ *)
+
end
\ No newline at end of file