CpsG.thy~
changeset 90 ed938e2246b9
parent 80 17305a85493d
--- a/CpsG.thy~	Thu Jan 28 16:36:46 2016 +0800
+++ b/CpsG.thy~	Thu Jan 28 21:14:17 2016 +0800
@@ -2,6 +2,17 @@
 imports PIPDefs
 begin
 
+lemma f_image_eq:
+  assumes h: "\<And> a. a \<in> A \<Longrightarrow> f a = g a"
+  shows "f ` A = g ` A"
+proof
+  show "f ` A \<subseteq> g ` A"
+    by(rule image_subsetI, auto intro:h)
+next
+  show "g ` A \<subseteq> f ` A"
+   by (rule image_subsetI, auto intro:h[symmetric])
+qed
+
 lemma Max_fg_mono:
   assumes "finite A"
   and "\<forall> a \<in> A. f a \<le> g a"
@@ -46,6 +57,57 @@
   from fnt and seq show "finite (f ` B)" by auto
 qed
 
+lemma Max_UNION: 
+  assumes "finite A"
+  and "A \<noteq> {}"
+  and "\<forall> M \<in> f ` A. finite M"
+  and "\<forall> M \<in> f ` A. M \<noteq> {}"
+  shows "Max (\<Union>x\<in> A. f x) = Max (Max ` f ` A)" (is "?L = ?R")
+  using assms[simp]
+proof -
+  have "?L = Max (\<Union>(f ` A))"
+    by (fold Union_image_eq, simp)
+  also have "... = ?R"
+    by (subst Max_Union, simp+)
+  finally show ?thesis .
+qed
+
+lemma max_Max_eq:
+  assumes "finite A"
+    and "A \<noteq> {}"
+    and "x = y"
+  shows "max x (Max A) = Max ({y} \<union> A)" (is "?L = ?R")
+proof -
+  have "?R = Max (insert y A)" by simp
+  also from assms have "... = ?L"
+      by (subst Max.insert, simp+)
+  finally show ?thesis by simp
+qed
+
+lemma birth_time_lt:  
+  assumes "s \<noteq> []"
+  shows "last_set th s < length s"
+  using assms
+proof(induct s)
+  case (Cons a s)
+  show ?case
+  proof(cases "s \<noteq> []")
+    case False
+    thus ?thesis
+      by (cases a, auto)
+  next
+    case True
+    show ?thesis using Cons(1)[OF True]
+      by (cases a, auto)
+  qed
+qed simp
+
+lemma th_in_ne: "th \<in> threads s \<Longrightarrow> s \<noteq> []"
+  by (induct s, auto)
+
+lemma preced_tm_lt: "th \<in> threads s \<Longrightarrow> preced th s = Prc x y \<Longrightarrow> y < length s"
+  by (drule_tac th_in_ne, unfold preced_def, auto intro: birth_time_lt)
+
 lemma eq_RAG: 
   "RAG (wq s) = RAG s"
   by (unfold cs_RAG_def s_RAG_def, auto)
@@ -1475,16 +1537,16 @@
   by (unfold s_RAG_def cs_waiting_def cs_holding_def, 
        auto intro:wq_threads)
 
+lemma RAG_threads:
+  assumes "(Th th) \<in> Field (RAG s)"
+  shows "th \<in> threads s"
+  using assms
+  by (metis Field_def UnE dm_RAG_threads rg_RAG_threads)
+
 end
 
-
-
-
-lemma preced_v [simp]: "preced th' (V th cs#s) = preced th' s"
-  by (unfold preced_def, simp)
-
 lemma (in valid_trace_v)
-  preced_es: "preced th (e#s) = preced th s"
+  preced_es [simp]: "preced th (e#s) = preced th s"
   by (unfold is_v preced_def, simp)
 
 lemma the_preced_v[simp]: "the_preced (V th cs#s) = the_preced s"
@@ -2105,6 +2167,44 @@
   qed
 qed
 
+lemma tRAG_alt_def: 
+  "tRAG s = {(Th th1, Th th2) | th1 th2. 
+                  \<exists> cs. (Th th1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th2) \<in> RAG s}"
+ by (auto simp:tRAG_def RAG_split wRAG_def hRAG_def)
+
+sublocale valid_trace < fsbttRAGs: fsubtree "tRAG s"
+proof -
+  have "fsubtree (tRAG s)"
+  proof -
+    have "fbranch (tRAG s)"
+    proof(unfold tRAG_def, rule fbranch_compose)
+        show "fbranch (wRAG s)"
+        proof(rule finite_fbranchI)
+           from finite_RAG show "finite (wRAG s)"
+           by (unfold RAG_split, auto)
+        qed
+    next
+        show "fbranch (hRAG s)"
+        proof(rule finite_fbranchI)
+           from finite_RAG 
+           show "finite (hRAG s)" by (unfold RAG_split, auto)
+        qed
+    qed
+    moreover have "wf (tRAG s)"
+    proof(rule wf_subset)
+      show "wf (RAG s O RAG s)" using wf_RAG
+        by (fold wf_comp_self, simp)
+    next
+      show "tRAG s \<subseteq> (RAG s O RAG s)"
+        by (unfold tRAG_alt_def, auto)
+    qed
+    ultimately show ?thesis
+      by (unfold fsubtree_def fsubtree_axioms_def,auto)
+  qed
+  from this[folded tRAG_def] show "fsubtree (tRAG s)" .
+qed
+
+
 context valid_trace
 begin
 
@@ -2119,7 +2219,7 @@
      have "?B = (subtree (RAG s) (Th th)) \<inter> {Th th' | th'. True}"
       by auto
      moreover have "... \<subseteq> (subtree (RAG s) (Th th))" by auto
-     moreover have "finite ..." by (simp add: finite_subtree) 
+     moreover have "finite ..." by (simp add: fsbtRAGs.finite_subtree) 
      ultimately show ?thesis by auto
   qed
   ultimately show ?thesis by auto
@@ -2169,10 +2269,6 @@
   ultimately show ?thesis by auto
 qed
 
-lemma max_cp_eq_the_preced:
-  shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)"
-  using max_cp_eq using the_preced_def by presburger 
-
 lemma wf_RAG_converse: 
   shows "wf ((RAG s)^-1)"
 proof(rule finite_acyclic_wf_converse)
@@ -2317,9 +2413,6 @@
   "children (RAG (s::state)) (Th th) = Cs ` {cs. holding s th cs}"
   by (unfold s_RAG_def, auto simp:children_def holding_eq)
 
-fun the_cs :: "node \<Rightarrow> cs" where
-  "the_cs (Cs cs) = cs"
-
 lemma holdents_alt_def:
   "holdents s th = the_cs ` (children (RAG (s::state)) (Th th))"
   by (unfold children_RAG_alt_def holdents_def, simp add: image_image)
@@ -2333,7 +2426,7 @@
 begin
 
 lemma finite_holdents: "finite (holdents s th)"
-  by (unfold holdents_alt_def, insert finite_children, auto)
+  by (unfold holdents_alt_def, insert fsbtRAGs.finite_children, auto)
   
 end
 
@@ -2577,7 +2670,7 @@
   using readys_kept1[OF assms] readys_kept2[OF assms]
   by metis
 
-lemma cnp_cnv_cncs_kept:
+lemma cnp_cnv_cncs_kept: (* ddd *)
   assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
   shows "cntP (e#s) th' = cntV (e#s) th' +  cntCS (e#s) th' + pvD (e#s) th'"
 proof(cases "th' = th")
@@ -3643,29 +3736,921 @@
   from star_rpath[OF star2] obtain xs2 
     where rp2: "rpath (RAG s) (Th th2') xs2 (Th th2)"
     by auto
+  from rp1 rp2
   show ?thesis
-  proof(cases rule:rtree_RAG.rpath_overlap[OF rp1 rp2])
-    case (1 xs')
+  proof(cases)
+    case (less_1 xs')
     moreover have "xs' = []"
     proof(rule ccontr)
       assume otherwise: "xs' \<noteq> []"
-      find_theorems rpath "_@_"
+      from rpath_plus[OF less_1(3) this]
+      have "(Th th1, Th th2) \<in> (RAG s)\<^sup>+" .
+      from tranclD[OF this]
+      obtain cs where "waiting s th1 cs"
+        by (unfold s_RAG_def, fold waiting_eq, auto)
+      with runing_1 show False
+        by (unfold runing_def readys_def, auto)
     qed
     ultimately have "xs2 = xs1" by simp
     from rpath_dest_eq[OF rp1 rp2[unfolded this]]
     show ?thesis by simp
   next
-    case (2 xs')
-    moreover have "xs' = []" sorry
+    case (less_2 xs')
+    moreover have "xs' = []"
+    proof(rule ccontr)
+      assume otherwise: "xs' \<noteq> []"
+      from rpath_plus[OF less_2(3) this]
+      have "(Th th2, Th th1) \<in> (RAG s)\<^sup>+" .
+      from tranclD[OF this]
+      obtain cs where "waiting s th2 cs"
+        by (unfold s_RAG_def, fold waiting_eq, auto)
+      with runing_2 show False
+        by (unfold runing_def readys_def, auto)
+    qed
     ultimately have "xs2 = xs1" by simp
     from rpath_dest_eq[OF rp1 rp2[unfolded this]]
     show ?thesis by simp
   qed
 qed
 
+lemma card_runing: "card (runing s) \<le> 1"
+proof(cases "runing s = {}")
+  case True
+  thus ?thesis by auto
+next
+  case False
+  then obtain th where [simp]: "th \<in> runing s" by auto
+  from runing_unique[OF this]
+  have "runing s = {th}" by auto
+  thus ?thesis by auto
+qed
+
+lemma create_pre:
+  assumes stp: "step s e"
+  and not_in: "th \<notin> threads s"
+  and is_in: "th \<in> threads (e#s)"
+  obtains prio where "e = Create th prio"
+proof -
+  from assms  
+  show ?thesis
+  proof(cases)
+    case (thread_create thread prio)
+    with is_in not_in have "e = Create th prio" by simp
+    from that[OF this] show ?thesis .
+  next
+    case (thread_exit thread)
+    with assms show ?thesis by (auto intro!:that)
+  next
+    case (thread_P thread)
+    with assms show ?thesis by (auto intro!:that)
+  next
+    case (thread_V thread)
+    with assms show ?thesis by (auto intro!:that)
+  next 
+    case (thread_set thread)
+    with assms show ?thesis by (auto intro!:that)
+  qed
+qed
+
+lemma eq_pv_children:
+  assumes eq_pv: "cntP s th = cntV s th"
+  shows "children (RAG s) (Th th) = {}"
+proof -
+    from cnp_cnv_cncs and eq_pv
+    have "cntCS s th = 0" 
+      by (auto split:if_splits)
+    from this[unfolded cntCS_def holdents_alt_def]
+    have card_0: "card (the_cs ` children (RAG s) (Th th)) = 0" .
+    have "finite (the_cs ` children (RAG s) (Th th))"
+      by (simp add: fsbtRAGs.finite_children)
+    from card_0[unfolded card_0_eq[OF this]]
+    show ?thesis by auto
+qed
+
+lemma eq_pv_holdents:
+  assumes eq_pv: "cntP s th = cntV s th"
+  shows "holdents s th = {}"
+  by (unfold holdents_alt_def eq_pv_children[OF assms], simp)
+
+lemma eq_pv_subtree:
+  assumes eq_pv: "cntP s th = cntV s th"
+  shows "subtree (RAG s) (Th th) = {Th th}"
+  using eq_pv_children[OF assms]
+    by (unfold subtree_children, simp)
+
 end
 
-
+lemma cp_gen_alt_def:
+  "cp_gen s = (Max \<circ> (\<lambda>x. (the_preced s \<circ> the_thread) ` subtree (tRAG s) x))"
+    by (auto simp:cp_gen_def)
+
+lemma tRAG_nodeE:
+  assumes "(n1, n2) \<in> tRAG s"
+  obtains th1 th2 where "n1 = Th th1" "n2 = Th th2"
+  using assms
+  by (auto simp: tRAG_def wRAG_def hRAG_def tRAG_def)
+
+lemma subtree_nodeE:
+  assumes "n \<in> subtree (tRAG s) (Th th)"
+  obtains th1 where "n = Th th1"
+proof -
+  show ?thesis
+  proof(rule subtreeE[OF assms])
+    assume "n = Th th"
+    from that[OF this] show ?thesis .
+  next
+    assume "Th th \<in> ancestors (tRAG s) n"
+    hence "(n, Th th) \<in> (tRAG s)^+" by (auto simp:ancestors_def)
+    hence "\<exists> th1. n = Th th1"
+    proof(induct)
+      case (base y)
+      from tRAG_nodeE[OF this] show ?case by metis
+    next
+      case (step y z)
+      thus ?case by auto
+    qed
+    with that show ?thesis by auto
+  qed
+qed
+
+lemma tRAG_star_RAG: "(tRAG s)^* \<subseteq> (RAG s)^*"
+proof -
+  have "(wRAG s O hRAG s)^* \<subseteq> (RAG s O RAG s)^*" 
+    by (rule rtrancl_mono, auto simp:RAG_split)
+  also have "... \<subseteq> ((RAG s)^*)^*"
+    by (rule rtrancl_mono, auto)
+  also have "... = (RAG s)^*" by simp
+  finally show ?thesis by (unfold tRAG_def, simp)
+qed
+
+lemma tRAG_subtree_RAG: "subtree (tRAG s) x \<subseteq> subtree (RAG s) x"
+proof -
+  { fix a
+    assume "a \<in> subtree (tRAG s) x"
+    hence "(a, x) \<in> (tRAG s)^*" by (auto simp:subtree_def)
+    with tRAG_star_RAG
+    have "(a, x) \<in> (RAG s)^*" by auto
+    hence "a \<in> subtree (RAG s) x" by (auto simp:subtree_def)
+  } thus ?thesis by auto
+qed
+
+lemma tRAG_trancl_eq:
+   "{th'. (Th th', Th th)  \<in> (tRAG s)^+} = 
+    {th'. (Th th', Th th)  \<in> (RAG s)^+}"
+   (is "?L = ?R")
+proof -
+  { fix th'
+    assume "th' \<in> ?L"
+    hence "(Th th', Th th) \<in> (tRAG s)^+" by auto
+    from tranclD[OF this]
+    obtain z where h: "(Th th', z) \<in> tRAG s" "(z, Th th) \<in> (tRAG s)\<^sup>*" by auto
+    from tRAG_subtree_RAG and this(2)
+    have "(z, Th th) \<in> (RAG s)^*" by (meson subsetCE tRAG_star_RAG) 
+    moreover from h(1) have "(Th th', z) \<in> (RAG s)^+" using tRAG_alt_def by auto 
+    ultimately have "th' \<in> ?R"  by auto 
+  } moreover 
+  { fix th'
+    assume "th' \<in> ?R"
+    hence "(Th th', Th th) \<in> (RAG s)^+" by (auto)
+    from plus_rpath[OF this]
+    obtain xs where rp: "rpath (RAG s) (Th th') xs (Th th)" "xs \<noteq> []" by auto
+    hence "(Th th', Th th) \<in> (tRAG s)^+"
+    proof(induct xs arbitrary:th' th rule:length_induct)
+      case (1 xs th' th)
+      then obtain x1 xs1 where Cons1: "xs = x1#xs1" by (cases xs, auto)
+      show ?case
+      proof(cases "xs1")
+        case Nil
+        from 1(2)[unfolded Cons1 Nil]
+        have rp: "rpath (RAG s) (Th th') [x1] (Th th)" .
+        hence "(Th th', x1) \<in> (RAG s)" 
+          by (cases, auto)
+        then obtain cs where "x1 = Cs cs" 
+              by (unfold s_RAG_def, auto)
+        from rpath_nnl_lastE[OF rp[unfolded this]]
+        show ?thesis by auto
+      next
+        case (Cons x2 xs2)
+        from 1(2)[unfolded Cons1[unfolded this]]
+        have rp: "rpath (RAG s) (Th th') (x1 # x2 # xs2) (Th th)" .
+        from rpath_edges_on[OF this]
+        have eds: "edges_on (Th th' # x1 # x2 # xs2) \<subseteq> RAG s" .
+        have "(Th th', x1) \<in> edges_on (Th th' # x1 # x2 # xs2)"
+            by (simp add: edges_on_unfold)
+        with eds have rg1: "(Th th', x1) \<in> RAG s" by auto
+        then obtain cs1 where eq_x1: "x1 = Cs cs1" by (unfold s_RAG_def, auto)
+        have "(x1, x2) \<in> edges_on (Th th' # x1 # x2 # xs2)"
+            by (simp add: edges_on_unfold)
+        from this eds
+        have rg2: "(x1, x2) \<in> RAG s" by auto
+        from this[unfolded eq_x1] 
+        obtain th1 where eq_x2: "x2 = Th th1" by (unfold s_RAG_def, auto)
+        from rg1[unfolded eq_x1] rg2[unfolded eq_x1 eq_x2]
+        have rt1: "(Th th', Th th1) \<in> tRAG s" by (unfold tRAG_alt_def, auto)
+        from rp have "rpath (RAG s) x2 xs2 (Th th)"
+           by  (elim rpath_ConsE, simp)
+        from this[unfolded eq_x2] have rp': "rpath (RAG s) (Th th1) xs2 (Th th)" .
+        show ?thesis
+        proof(cases "xs2 = []")
+          case True
+          from rpath_nilE[OF rp'[unfolded this]]
+          have "th1 = th" by auto
+          from rt1[unfolded this] show ?thesis by auto
+        next
+          case False
+          from 1(1)[rule_format, OF _ rp' this, unfolded Cons1 Cons]
+          have "(Th th1, Th th) \<in> (tRAG s)\<^sup>+" by simp
+          with rt1 show ?thesis by auto
+        qed
+      qed
+    qed
+    hence "th' \<in> ?L" by auto
+  } ultimately show ?thesis by blast
+qed
+
+lemma tRAG_trancl_eq_Th:
+   "{Th th' | th'. (Th th', Th th)  \<in> (tRAG s)^+} = 
+    {Th th' | th'. (Th th', Th th)  \<in> (RAG s)^+}"
+    using tRAG_trancl_eq by auto
+
+lemma dependants_alt_def:
+  "dependants s th = {th'. (Th th', Th th) \<in> (tRAG s)^+}"
+  by (metis eq_RAG s_dependants_def tRAG_trancl_eq)
+
+lemma dependants_alt_def1:
+  "dependants (s::state) th = {th'. (Th th', Th th) \<in> (RAG s)^+}"
+  using dependants_alt_def tRAG_trancl_eq by auto
+
+context valid_trace
+begin
+lemma count_eq_RAG_plus:
+  assumes "cntP s th = cntV s th"
+  shows "{th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
+proof(rule ccontr)
+    assume otherwise: "{th'. (Th th', Th th) \<in> (RAG s)\<^sup>+} \<noteq> {}"
+    then obtain th' where "(Th th', Th th) \<in> (RAG s)^+" by auto
+    from tranclD2[OF this]
+    obtain z where "z \<in> children (RAG s) (Th th)" 
+      by (auto simp:children_def)
+    with eq_pv_children[OF assms]
+    show False by simp
+qed
+
+lemma eq_pv_dependants:
+  assumes eq_pv: "cntP s th = cntV s th"
+  shows "dependants s th = {}"
+proof -
+  from count_eq_RAG_plus[OF assms, folded dependants_alt_def1]
+  show ?thesis .
+qed
+
+end
+
+lemma eq_dependants: "dependants (wq s) = dependants s"
+  by (simp add: s_dependants_abv wq_def)
+
+context valid_trace
+begin
+
+lemma count_eq_tRAG_plus:
+  assumes "cntP s th = cntV s th"
+  shows "{th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
+  using assms eq_pv_dependants dependants_alt_def eq_dependants by auto 
+
+lemma count_eq_RAG_plus_Th:
+  assumes "cntP s th = cntV s th"
+  shows "{Th th' | th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
+  using count_eq_RAG_plus[OF assms] by auto
+
+lemma count_eq_tRAG_plus_Th:
+  assumes "cntP s th = cntV s th"
+  shows "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
+   using count_eq_tRAG_plus[OF assms] by auto
+end
+
+lemma inj_the_preced: 
+  "inj_on (the_preced s) (threads s)"
+  by (metis inj_onI preced_unique the_preced_def)
+
+lemma tRAG_Field:
+  "Field (tRAG s) \<subseteq> Field (RAG s)"
+  by (unfold tRAG_alt_def Field_def, auto)
+
+lemma tRAG_ancestorsE:
+  assumes "x \<in> ancestors (tRAG s) u"
+  obtains th where "x = Th th"
+proof -
+  from assms have "(u, x) \<in> (tRAG s)^+" 
+      by (unfold ancestors_def, auto)
+  from tranclE[OF this] obtain c where "(c, x) \<in> tRAG s" by auto
+  then obtain th where "x = Th th"
+    by (unfold tRAG_alt_def, auto)
+  from that[OF this] show ?thesis .
+qed
+
+lemma tRAG_mono:
+  assumes "RAG s' \<subseteq> RAG s"
+  shows "tRAG s' \<subseteq> tRAG s"
+  using assms 
+  by (unfold tRAG_alt_def, auto)
+
+lemma holding_next_thI:
+  assumes "holding s th cs"
+  and "length (wq s cs) > 1"
+  obtains th' where "next_th s th cs th'"
+proof -
+  from assms(1)[folded holding_eq, unfolded cs_holding_def]
+  have " th \<in> set (wq s cs) \<and> th = hd (wq s cs)" 
+    by (unfold s_holding_def, fold wq_def, auto)
+  then obtain rest where h1: "wq s cs = th#rest" 
+    by (cases "wq s cs", auto)
+  with assms(2) have h2: "rest \<noteq> []" by auto
+  let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"
+  have "next_th s th cs ?th'" using  h1(1) h2 
+    by (unfold next_th_def, auto)
+  from that[OF this] show ?thesis .
+qed
+
+lemma RAG_tRAG_transfer:
+  assumes "vt s'"
+  assumes "RAG s = RAG s' \<union> {(Th th, Cs cs)}"
+  and "(Cs cs, Th th'') \<in> RAG s'"
+  shows "tRAG s = tRAG s' \<union> {(Th th, Th th'')}" (is "?L = ?R")
+proof -
+  interpret vt_s': valid_trace "s'" using assms(1)
+    by (unfold_locales, simp)
+  { fix n1 n2
+    assume "(n1, n2) \<in> ?L"
+    from this[unfolded tRAG_alt_def]
+    obtain th1 th2 cs' where 
+      h: "n1 = Th th1" "n2 = Th th2" 
+         "(Th th1, Cs cs') \<in> RAG s"
+         "(Cs cs', Th th2) \<in> RAG s" by auto
+    from h(4) and assms(2) have cs_in: "(Cs cs', Th th2) \<in> RAG s'" by auto
+    from h(3) and assms(2) 
+    have "(Th th1, Cs cs') = (Th th, Cs cs) \<or> 
+          (Th th1, Cs cs') \<in> RAG s'" by auto
+    hence "(n1, n2) \<in> ?R"
+    proof
+      assume h1: "(Th th1, Cs cs') = (Th th, Cs cs)"
+      hence eq_th1: "th1 = th" by simp
+      moreover have "th2 = th''"
+      proof -
+        from h1 have "cs' = cs" by simp
+        from assms(3) cs_in[unfolded this]
+        show ?thesis using vt_s'.unique_RAG by auto 
+      qed
+      ultimately show ?thesis using h(1,2) by auto
+    next
+      assume "(Th th1, Cs cs') \<in> RAG s'"
+      with cs_in have "(Th th1, Th th2) \<in> tRAG s'"
+        by (unfold tRAG_alt_def, auto)
+      from this[folded h(1, 2)] show ?thesis by auto
+    qed
+  } moreover {
+    fix n1 n2
+    assume "(n1, n2) \<in> ?R"
+    hence "(n1, n2) \<in>tRAG s' \<or> (n1, n2) = (Th th, Th th'')" by auto
+    hence "(n1, n2) \<in> ?L" 
+    proof
+      assume "(n1, n2) \<in> tRAG s'"
+      moreover have "... \<subseteq> ?L"
+      proof(rule tRAG_mono)
+        show "RAG s' \<subseteq> RAG s" by (unfold assms(2), auto)
+      qed
+      ultimately show ?thesis by auto
+    next
+      assume eq_n: "(n1, n2) = (Th th, Th th'')"
+      from assms(2, 3) have "(Cs cs, Th th'') \<in> RAG s" by auto
+      moreover have "(Th th, Cs cs) \<in> RAG s" using assms(2) by auto
+      ultimately show ?thesis 
+        by (unfold eq_n tRAG_alt_def, auto)
+    qed
+  } ultimately show ?thesis by auto
+qed
+
+context valid_trace
+begin
+
+lemmas RAG_tRAG_transfer = RAG_tRAG_transfer[OF vt]
 
 end
 
+lemma tRAG_subtree_eq: 
+   "(subtree (tRAG s) (Th th)) = {Th th' | th'. Th th'  \<in> (subtree (RAG s) (Th th))}"
+   (is "?L = ?R")
+proof -
+  { fix n 
+    assume h: "n \<in> ?L"
+    hence "n \<in> ?R"
+    by (smt mem_Collect_eq subsetCE subtree_def subtree_nodeE tRAG_subtree_RAG) 
+  } moreover {
+    fix n
+    assume "n \<in> ?R"
+    then obtain th' where h: "n = Th th'" "(Th th', Th th) \<in> (RAG s)^*"
+      by (auto simp:subtree_def)
+    from rtranclD[OF this(2)]
+    have "n \<in> ?L"
+    proof
+      assume "Th th' \<noteq> Th th \<and> (Th th', Th th) \<in> (RAG s)\<^sup>+"
+      with h have "n \<in> {Th th' | th'. (Th th', Th th)  \<in> (RAG s)^+}" by auto
+      thus ?thesis using subtree_def tRAG_trancl_eq by fastforce
+    qed (insert h, auto simp:subtree_def)
+  } ultimately show ?thesis by auto
+qed
+
+lemma threads_set_eq: 
+   "the_thread ` (subtree (tRAG s) (Th th)) = 
+                  {th'. Th th' \<in> (subtree (RAG s) (Th th))}" (is "?L = ?R")
+   by (auto intro:rev_image_eqI simp:tRAG_subtree_eq)
+
+lemma cp_alt_def1: 
+  "cp s th = Max ((the_preced s o the_thread) ` (subtree (tRAG s) (Th th)))"
+proof -
+  have "(the_preced s ` the_thread ` subtree (tRAG s) (Th th)) =
+       ((the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th))"
+       by auto
+  thus ?thesis by (unfold cp_alt_def, fold threads_set_eq, auto)
+qed
+
+lemma cp_gen_def_cond: 
+  assumes "x = Th th"
+  shows "cp s th = cp_gen s (Th th)"
+by (unfold cp_alt_def1 cp_gen_def, simp)
+
+lemma cp_gen_over_set:
+  assumes "\<forall> x \<in> A. \<exists> th. x = Th th"
+  shows "cp_gen s ` A = (cp s \<circ> the_thread) ` A"
+proof(rule f_image_eq)
+  fix a
+  assume "a \<in> A"
+  from assms[rule_format, OF this]
+  obtain th where eq_a: "a = Th th" by auto
+  show "cp_gen s a = (cp s \<circ> the_thread) a"
+    by  (unfold eq_a, simp, unfold cp_gen_def_cond[OF refl[of "Th th"]], simp)
+qed
+
+context valid_trace
+begin
+
+lemma subtree_tRAG_thread:
+  assumes "th \<in> threads s"
+  shows "subtree (tRAG s) (Th th) \<subseteq> Th ` threads s" (is "?L \<subseteq> ?R")
+proof -
+  have "?L = {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
+    by (unfold tRAG_subtree_eq, simp)
+  also have "... \<subseteq> ?R"
+  proof
+    fix x
+    assume "x \<in> {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
+    then obtain th' where h: "x = Th th'" "Th th' \<in> subtree (RAG s) (Th th)" by auto
+    from this(2)
+    show "x \<in> ?R"
+    proof(cases rule:subtreeE)
+      case 1
+      thus ?thesis by (simp add: assms h(1)) 
+    next
+      case 2
+      thus ?thesis by (metis ancestors_Field dm_RAG_threads h(1) image_eqI) 
+    qed
+  qed
+  finally show ?thesis .
+qed
+
+lemma readys_root:
+  assumes "th \<in> readys s"
+  shows "root (RAG s) (Th th)"
+proof -
+  { fix x
+    assume "x \<in> ancestors (RAG s) (Th th)"
+    hence h: "(Th th, x) \<in> (RAG s)^+" by (auto simp:ancestors_def)
+    from tranclD[OF this]
+    obtain z where "(Th th, z) \<in> RAG s" by auto
+    with assms(1) have False
+         apply (case_tac z, auto simp:readys_def s_RAG_def s_waiting_def cs_waiting_def)
+         by (fold wq_def, blast)
+  } thus ?thesis by (unfold root_def, auto)
+qed
+
+lemma readys_in_no_subtree:
+  assumes "th \<in> readys s"
+  and "th' \<noteq> th"
+  shows "Th th \<notin> subtree (RAG s) (Th th')" 
+proof
+   assume "Th th \<in> subtree (RAG s) (Th th')"
+   thus False
+   proof(cases rule:subtreeE)
+      case 1
+      with assms show ?thesis by auto
+   next
+      case 2
+      with readys_root[OF assms(1)]
+      show ?thesis by (auto simp:root_def)
+   qed
+qed
+
+lemma not_in_thread_isolated:
+  assumes "th \<notin> threads s"
+  shows "(Th th) \<notin> Field (RAG s)"
+proof
+  assume "(Th th) \<in> Field (RAG s)"
+  with dm_RAG_threads and rg_RAG_threads assms
+  show False by (unfold Field_def, blast)
+qed
+
+end
+
+definition detached :: "state \<Rightarrow> thread \<Rightarrow> bool"
+  where "detached s th \<equiv> (\<not>(\<exists> cs. holding s th cs)) \<and> (\<not>(\<exists>cs. waiting s th cs))"
+
+
+lemma detached_test:
+  shows "detached s th = (Th th \<notin> Field (RAG s))"
+apply(simp add: detached_def Field_def)
+apply(simp add: s_RAG_def)
+apply(simp add: s_holding_abv s_waiting_abv)
+apply(simp add: Domain_iff Range_iff)
+apply(simp add: wq_def)
+apply(auto)
+done
+
+context valid_trace
+begin
+
+lemma detached_intro:
+  assumes eq_pv: "cntP s th = cntV s th"
+  shows "detached s th"
+proof -
+  from eq_pv cnp_cnv_cncs
+  have "th \<in> readys s \<or> th \<notin> threads s" by (auto simp:pvD_def)
+  thus ?thesis
+  proof
+    assume "th \<notin> threads s"
+    with rg_RAG_threads dm_RAG_threads
+    show ?thesis
+      by (auto simp add: detached_def s_RAG_def s_waiting_abv 
+              s_holding_abv wq_def Domain_iff Range_iff)
+  next
+    assume "th \<in> readys s"
+    moreover have "Th th \<notin> Range (RAG s)"
+    proof -
+      from eq_pv_children[OF assms]
+      have "children (RAG s) (Th th) = {}" .
+      thus ?thesis
+      by (unfold children_def, auto)
+    qed
+    ultimately show ?thesis
+      by (auto simp add: detached_def s_RAG_def s_waiting_abv 
+              s_holding_abv wq_def readys_def)
+  qed
+qed
+
+lemma detached_elim:
+  assumes dtc: "detached s th"
+  shows "cntP s th = cntV s th"
+proof -
+  have cncs_z: "cntCS s th = 0"
+  proof -
+    from dtc have "holdents s th = {}"
+      unfolding detached_def holdents_test s_RAG_def
+      by (simp add: s_waiting_abv wq_def s_holding_abv Domain_iff Range_iff)
+    thus ?thesis by (auto simp:cntCS_def)
+  qed
+  show ?thesis
+  proof(cases "th \<in> threads s")
+    case True
+    with dtc 
+    have "th \<in> readys s"
+      by (unfold readys_def detached_def Field_def Domain_def Range_def, 
+           auto simp:waiting_eq s_RAG_def)
+    with cncs_z  show ?thesis using cnp_cnv_cncs by (simp add:pvD_def)
+  next
+    case False
+    with cncs_z and cnp_cnv_cncs show ?thesis by (simp add:pvD_def)
+  qed
+qed
+
+lemma detached_eq:
+  shows "(detached s th) = (cntP s th = cntV s th)"
+  by (insert vt, auto intro:detached_intro detached_elim)
+
+end
+
+context valid_trace
+begin
+(* ddd *)
+lemma cp_gen_rec:
+  assumes "x = Th th"
+  shows "cp_gen s x = Max ({the_preced s th} \<union> (cp_gen s) ` children (tRAG s) x)"
+proof(cases "children (tRAG s) x = {}")
+  case True
+  show ?thesis
+    by (unfold True cp_gen_def subtree_children, simp add:assms)
+next
+  case False
+  hence [simp]: "children (tRAG s) x \<noteq> {}" by auto
+  note fsbttRAGs.finite_subtree[simp]
+  have [simp]: "finite (children (tRAG s) x)"
+     by (intro rev_finite_subset[OF fsbttRAGs.finite_subtree], 
+            rule children_subtree)
+  { fix r x
+    have "subtree r x \<noteq> {}" by (auto simp:subtree_def)
+  } note this[simp]
+  have [simp]: "\<exists>x\<in>children (tRAG s) x. subtree (tRAG s) x \<noteq> {}"
+  proof -
+    from False obtain q where "q \<in> children (tRAG s) x" by blast
+    moreover have "subtree (tRAG s) q \<noteq> {}" by simp
+    ultimately show ?thesis by blast
+  qed
+  have h: "Max ((the_preced s \<circ> the_thread) `
+                ({x} \<union> \<Union>(subtree (tRAG s) ` children (tRAG s) x))) =
+        Max ({the_preced s th} \<union> cp_gen s ` children (tRAG s) x)"
+                     (is "?L = ?R")
+  proof -
+    let "Max (?f ` (?A \<union> \<Union> (?g ` ?B)))" = ?L
+    let "Max (_ \<union> (?h ` ?B))" = ?R
+    let ?L1 = "?f ` \<Union>(?g ` ?B)"
+    have eq_Max_L1: "Max ?L1 = Max (?h ` ?B)"
+    proof -
+      have "?L1 = ?f ` (\<Union> x \<in> ?B.(?g x))" by simp
+      also have "... =  (\<Union> x \<in> ?B. ?f ` (?g x))" by auto
+      finally have "Max ?L1 = Max ..." by simp
+      also have "... = Max (Max ` (\<lambda>x. ?f ` subtree (tRAG s) x) ` ?B)"
+        by (subst Max_UNION, simp+)
+      also have "... = Max (cp_gen s ` children (tRAG s) x)"
+          by (unfold image_comp cp_gen_alt_def, simp)
+      finally show ?thesis .
+    qed
+    show ?thesis
+    proof -
+      have "?L = Max (?f ` ?A \<union> ?L1)" by simp
+      also have "... = max (the_preced s (the_thread x)) (Max ?L1)"
+            by (subst Max_Un, simp+)
+      also have "... = max (?f x) (Max (?h ` ?B))"
+        by (unfold eq_Max_L1, simp)
+      also have "... =?R"
+        by (rule max_Max_eq, (simp)+, unfold assms, simp)
+      finally show ?thesis .
+    qed
+  qed  thus ?thesis 
+          by (fold h subtree_children, unfold cp_gen_def, simp) 
+qed
+
+lemma cp_rec:
+  "cp s th = Max ({the_preced s th} \<union> 
+                     (cp s o the_thread) ` children (tRAG s) (Th th))"
+proof -
+  have "Th th = Th th" by simp
+  note h =  cp_gen_def_cond[OF this] cp_gen_rec[OF this]
+  show ?thesis 
+  proof -
+    have "cp_gen s ` children (tRAG s) (Th th) = 
+                (cp s \<circ> the_thread) ` children (tRAG s) (Th th)"
+    proof(rule cp_gen_over_set)
+      show " \<forall>x\<in>children (tRAG s) (Th th). \<exists>th. x = Th th"
+        by (unfold tRAG_alt_def, auto simp:children_def)
+    qed
+    thus ?thesis by (subst (1) h(1), unfold h(2), simp)
+  qed
+qed
+
+lemma next_th_holding:
+  assumes nxt: "next_th s th cs th'"
+  shows "holding (wq s) th cs"
+proof -
+  from nxt[unfolded next_th_def]
+  obtain rest where h: "wq s cs = th # rest"
+                       "rest \<noteq> []" 
+                       "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
+  thus ?thesis
+    by (unfold cs_holding_def, auto)
+qed
+
+lemma next_th_waiting:
+  assumes nxt: "next_th s th cs th'"
+  shows "waiting (wq s) th' cs"
+proof -
+  from nxt[unfolded next_th_def]
+  obtain rest where h: "wq s cs = th # rest"
+                       "rest \<noteq> []" 
+                       "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
+  from wq_distinct[of cs, unfolded h]
+  have dst: "distinct (th # rest)" .
+  have in_rest: "th' \<in> set rest"
+  proof(unfold h, rule someI2)
+    show "distinct rest \<and> set rest = set rest" using dst by auto
+  next
+    fix x assume "distinct x \<and> set x = set rest"
+    with h(2)
+    show "hd x \<in> set (rest)" by (cases x, auto)
+  qed
+  hence "th' \<in> set (wq s cs)" by (unfold h(1), auto)
+  moreover have "th' \<noteq> hd (wq s cs)"
+    by (unfold h(1), insert in_rest dst, auto)
+  ultimately show ?thesis by (auto simp:cs_waiting_def)
+qed
+
+lemma next_th_RAG:
+  assumes nxt: "next_th (s::event list) th cs th'"
+  shows "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s"
+  using vt assms next_th_holding next_th_waiting
+  by (unfold s_RAG_def, simp)
+
+end
+
+lemma next_th_unique: 
+  assumes nt1: "next_th s th cs th1"
+  and nt2: "next_th s th cs th2"
+  shows "th1 = th2"
+using assms by (unfold next_th_def, auto)
+
+context valid_trace
+begin
+
+thm th_chain_to_ready
+
+find_theorems subtree Th RAG
+
+lemma "(threads s) = (\<Union> th \<in> readys s. {th'. Th th' \<in> subtree (RAG s) (Th th)})"
+    (is "?L = ?R")
+proof -
+  { fix th1
+    assume "th1 \<in> ?L"
+    from th_chain_to_ready[OF this]
+    have "th1 \<in> readys s \<or> (\<exists>th'a. th'a \<in> readys s \<and> (Th th1, Th th'a) \<in> (RAG s)\<^sup>+)" .
+    hence "th1 \<in> ?R"
+    proof
+      assume "th1 \<in> readys s"
+      thus ?thesis by (auto simp:subtree_def)
+    next
+      assume "\<exists>th'a. th'a \<in> readys s \<and> (Th th1, Th th'a) \<in> (RAG s)\<^sup>+"
+      thus ?thesis 
+    qed
+  } moreover 
+  { fix th'
+    assume "th' \<in> ?R"
+    have "th' \<in> ?L" sorry
+  } ultimately show ?thesis by auto
+qed
+
+lemma max_cp_readys_threads_pre: (* ccc *)
+  assumes np: "threads s \<noteq> {}"
+  shows "Max (cp s ` readys s) = Max (cp s ` threads s)"
+proof(unfold max_cp_eq)
+  show "Max (cp s ` readys s) = Max (the_preced s ` threads s)"
+  proof -
+    let ?p = "Max (the_preced s ` threads s)" 
+    let ?f = "the_preced s"
+    have "?p \<in> (?f ` threads s)"
+    proof(rule Max_in)
+      from finite_threads show "finite (?f ` threads s)" by simp
+    next
+      from np show "?f ` threads s \<noteq> {}" by simp
+    qed
+    then obtain tm where tm_max: "?f tm = ?p" and tm_in: "tm \<in> threads s"
+      by (auto simp:Image_def)
+    from th_chain_to_ready [OF tm_in]
+    have "tm \<in> readys s \<or> (\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (RAG s)\<^sup>+)" .
+    thus ?thesis
+    proof
+      assume "\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (RAG s)\<^sup>+ "
+      then obtain th' where th'_in: "th' \<in> readys s" 
+        and tm_chain:"(Th tm, Th th') \<in> (RAG s)\<^sup>+" by auto
+      have "cp s th' = ?f tm"
+      proof(subst cp_eq_cpreced, subst cpreced_def, rule Max_eqI)
+        from dependants_threads finite_threads
+        show "finite ((\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th'))" 
+          by (auto intro:finite_subset)
+      next
+        fix p assume p_in: "p \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')"
+        from tm_max have " preced tm s = Max ((\<lambda>th. preced th s) ` threads s)" .
+        moreover have "p \<le> \<dots>"
+        proof(rule Max_ge)
+          from finite_threads
+          show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
+        next
+          from p_in and th'_in and dependants_threads[of th']
+          show "p \<in> (\<lambda>th. preced th s) ` threads s"
+            by (auto simp:readys_def)
+        qed
+        ultimately show "p \<le> preced tm s" by auto
+      next
+        show "preced tm s \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')"
+        proof -
+          from tm_chain
+          have "tm \<in> dependants (wq s) th'"
+            by (unfold cs_dependants_def s_RAG_def cs_RAG_def, auto)
+          thus ?thesis by auto
+        qed
+      qed
+      with tm_max
+      have h: "cp s th' = Max ((\<lambda>th. preced th s) ` threads s)" by simp
+      show ?thesis
+      proof (fold h, rule Max_eqI)
+        fix q 
+        assume "q \<in> cp s ` readys s"
+        then obtain th1 where th1_in: "th1 \<in> readys s"
+          and eq_q: "q = cp s th1" by auto
+        show "q \<le> cp s th'"
+          apply (unfold h eq_q)
+          apply (unfold cp_eq_cpreced cpreced_def)
+          apply (rule Max_mono)
+        proof -
+          from dependants_threads [of th1] th1_in
+          show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<subseteq> 
+                 (\<lambda>th. preced th s) ` threads s"
+            by (auto simp:readys_def)
+        next
+          show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<noteq> {}" by simp
+        next
+          from finite_threads 
+          show " finite ((\<lambda>th. preced th s) ` threads s)" by simp
+        qed
+      next
+        from finite_threads
+        show "finite (cp s ` readys s)" by (auto simp:readys_def)
+      next
+        from th'_in
+        show "cp s th' \<in> cp s ` readys s" by simp
+      qed
+    next
+      assume tm_ready: "tm \<in> readys s"
+      show ?thesis
+      proof(fold tm_max)
+        have cp_eq_p: "cp s tm = preced tm s"
+        proof(unfold cp_eq_cpreced cpreced_def, rule Max_eqI)
+          fix y 
+          assume hy: "y \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm)"
+          show "y \<le> preced tm s"
+          proof -
+            { fix y'
+              assume hy' : "y' \<in> ((\<lambda>th. preced th s) ` dependants (wq s) tm)"
+              have "y' \<le> preced tm s"
+              proof(unfold tm_max, rule Max_ge)
+                from hy' dependants_threads[of tm]
+                show "y' \<in> (\<lambda>th. preced th s) ` threads s" by auto
+              next
+                from finite_threads
+                show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
+              qed
+            } with hy show ?thesis by auto
+          qed
+        next
+          from dependants_threads[of tm] finite_threads
+          show "finite ((\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm))"
+            by (auto intro:finite_subset)
+        next
+          show "preced tm s \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm)"
+            by simp
+        qed 
+        moreover have "Max (cp s ` readys s) = cp s tm"
+        proof(rule Max_eqI)
+          from tm_ready show "cp s tm \<in> cp s ` readys s" by simp
+        next
+          from finite_threads
+          show "finite (cp s ` readys s)" by (auto simp:readys_def)
+        next
+          fix y assume "y \<in> cp s ` readys s"
+          then obtain th1 where th1_readys: "th1 \<in> readys s"
+            and h: "y = cp s th1" by auto
+          show "y \<le> cp s tm"
+            apply(unfold cp_eq_p h)
+            apply(unfold cp_eq_cpreced cpreced_def tm_max, rule Max_mono)
+          proof -
+            from finite_threads
+            show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
+          next
+            show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<noteq> {}"
+              by simp
+          next
+            from dependants_threads[of th1] th1_readys
+            show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) 
+                    \<subseteq> (\<lambda>th. preced th s) ` threads s"
+              by (auto simp:readys_def)
+          qed
+        qed
+        ultimately show " Max (cp s ` readys s) = preced tm s" by simp
+      qed 
+    qed
+  qed
+qed
+
+text {* (* ccc *) \noindent
+  Since the current precedence of the threads in ready queue will always be boosted,
+  there must be one inside it has the maximum precedence of the whole system. 
+*}
+lemma max_cp_readys_threads:
+  shows "Max (cp s ` readys s) = Max (cp s ` threads s)"
+proof(cases "threads s = {}")
+  case True
+  thus ?thesis 
+    by (auto simp:readys_def)
+next
+  case False
+  show ?thesis by (rule max_cp_readys_threads_pre[OF False])
+qed
+
+end
+
+end
+