--- a/Moment.thy Tue Jun 14 13:56:51 2016 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,105 +0,0 @@
-theory Moment
-imports Main
-begin
-
-definition moment :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
-where "moment n s = rev (take n (rev s))"
-
-value "moment 3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9::int]"
-value "moment 2 [5, 4, 3, 2, 1, 0::int]"
-
-lemma moment_app [simp]:
- assumes ile: "i \<le> length s"
- shows "moment i (s' @ s) = moment i s"
-using assms unfolding moment_def by simp
-
-lemma moment_eq [simp]: "moment (length s) (s' @ s) = s"
- unfolding moment_def by simp
-
-lemma moment_ge [simp]: "length s \<le> n \<Longrightarrow> moment n s = s"
- by (unfold moment_def, simp)
-
-lemma moment_zero [simp]: "moment 0 s = []"
- by (simp add:moment_def)
-
-lemma least_idx:
- assumes "Q (i::nat)"
- obtains j where "j \<le> i" "Q j" "\<forall> k < j. \<not> Q k"
- using assms
- by (metis ex_least_nat_le le0 not_less0)
-
-lemma duration_idx:
- assumes "\<not> Q (i::nat)"
- and "Q j"
- and "i \<le> j"
- obtains k where "i \<le> k" "k < j" "\<not> Q k" "\<forall> i'. k < i' \<and> i' \<le> j \<longrightarrow> Q i'"
-proof -
- let ?Q = "\<lambda> t. t \<le> j \<and> \<not> Q (j - t)"
- have "?Q (j - i)" using assms by (simp add: assms(1))
- from least_idx [of ?Q, OF this]
- obtain l
- where h: "l \<le> j - i" "\<not> Q (j - l)" "\<forall>k<l. \<not> (k \<le> j \<and> \<not> Q (j - k))"
- by metis
- let ?k = "j - l"
- have "i \<le> ?k" using assms(3) h(1) by linarith
- moreover have "?k < j" by (metis assms(2) diff_le_self h(2) le_neq_implies_less)
- moreover have "\<not> Q ?k" by (simp add: h(2))
- moreover have "\<forall> i'. ?k < i' \<and> i' \<le> j \<longrightarrow> Q i'"
- by (metis diff_diff_cancel diff_le_self diff_less_mono2 h(3)
- less_imp_diff_less not_less)
- ultimately show ?thesis using that by metis
-qed
-
-lemma p_split_gen:
- assumes "Q s"
- and "\<not> Q (moment k s)"
- shows "(\<exists> i. i < length s \<and> k \<le> i \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
-proof(cases "k \<le> length s")
- case True
- let ?Q = "\<lambda> t. Q (moment t s)"
- have "?Q (length s)" using assms(1) by simp
- from duration_idx[of ?Q, OF assms(2) this True]
- obtain i where h: "k \<le> i" "i < length s" "\<not> Q (moment i s)"
- "\<forall>i'. i < i' \<and> i' \<le> length s \<longrightarrow> Q (moment i' s)" by metis
- moreover have "(\<forall> i' > i. Q (moment i' s))" using h(4) assms(1) not_less
- by fastforce
- ultimately show ?thesis by metis
-qed (insert assms, auto)
-
-lemma p_split:
- assumes qs: "Q s"
- and nq: "\<not> Q []"
- shows "(\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
-proof -
- from nq have "\<not> Q (moment 0 s)" by simp
- from p_split_gen [of Q s 0, OF qs this]
- show ?thesis by auto
-qed
-
-lemma moment_Suc_tl:
- assumes "Suc i \<le> length s"
- shows "tl (moment (Suc i) s) = moment i s"
- using assms
- by (simp add:moment_def rev_take,
- metis Suc_diff_le diff_Suc_Suc drop_Suc tl_drop)
-
-lemma moment_Suc_hd:
- assumes "Suc i \<le> length s"
- shows "hd (moment (Suc i) s) = s!(length s - Suc i)"
- by (simp add:moment_def rev_take,
- subst hd_drop_conv_nth, insert assms, auto)
-
-lemma moment_plus:
- assumes "Suc i \<le> length s"
- shows "(moment (Suc i) s) = (hd (moment (Suc i) s)) # (moment i s)"
-proof -
- have "(moment (Suc i) s) \<noteq> []" using assms
- by (simp add:moment_def rev_take)
- hence "(moment (Suc i) s) = (hd (moment (Suc i) s)) # tl (moment (Suc i) s)"
- by auto
- with moment_Suc_tl[OF assms]
- show ?thesis by metis
-qed
-
-end
-