changeset 181 | d37e0d18eddd |
parent 179 | f9e6c4166476 |
child 185 | 42767f6e0ae9 |
--- a/Implementation.thy Thu Jun 29 14:59:55 2017 +0100 +++ b/Implementation.thy Thu Jun 29 15:31:24 2017 +0100 @@ -70,7 +70,7 @@ *} lemma cp_rec_tG: - "cp s th = Max (preceds {th} s \<union> cprecs (children (tG s) th) s)" + "cp s th = Max ({preced th s} \<union> cprecs (children (tG s) th) s)" proof - have [simp]: "(cp s \<circ> the_thread \<circ> Th) = cp s" by (rule ext, simp) have [simp]: "(cp s \<circ> the_thread) ` children (tRAG s) (Th th) =