--- a/ExtGG.thy Tue May 20 12:49:21 2014 +0100
+++ b/ExtGG.thy Thu May 22 17:40:39 2014 +0100
@@ -978,7 +978,7 @@
from th_kept have "th \<in> threads (t@s)" by auto
from th_chain_to_ready[OF vt_t this] and not_ready
obtain th' where th'_in: "th' \<in> readys (t@s)"
- and dp: "(Th th, Th th') \<in> (depend (t @ s))\<^sup>+" by auto
+ and dp: "(Th th, Th th') \<in> (RAG (t @ s))\<^sup>+" by auto
have "th' \<in> runing (t@s)"
proof -
have "cp (t @ s) th' = Max (cp (t @ s) ` readys (t @ s))"
@@ -1021,7 +1021,7 @@
next
from dp
have "th \<in> dependants (wq (t @ s)) th'"
- by (unfold cs_dependants_def, auto simp:eq_depend)
+ by (unfold cs_dependants_def, auto simp:eq_RAG)
thus "preced th (t @ s) \<in>
(\<lambda>th. preced th (t @ s)) ` ({th'} \<union> dependants (wq (t @ s)) th')"
by auto