--- a/RTree.thy Thu Jul 07 13:32:09 2016 +0100
+++ b/RTree.thy Fri Jul 08 01:25:19 2016 +0100
@@ -21,7 +21,7 @@
*}
-locale rtree =
+locale forest =
fixes r
assumes sgv: "single_valued r"
assumes acl: "acyclic r"
@@ -110,7 +110,7 @@
definition "children r x = {y. (y, x) \<in> r}"
-locale fgraph = rtree +
+locale fforest = forest +
assumes fb: "finite (children r x)"
assumes wf: "wf r"
begin
@@ -721,7 +721,7 @@
subsubsection {* Properties about relational trees *}
-context rtree
+context forest
begin
lemma ancestors_headE:
@@ -1350,7 +1350,7 @@
qed
qed
-end (* of rtree *)
+end (* of forest *)
lemma subtree_trancl:
"subtree r x = {x} \<union> {y. (y, x) \<in> r^+}" (is "?L = ?R")
@@ -1385,7 +1385,7 @@
"subtree r x = ({x} \<union> (\<Union> (subtree r ` (children r x))))" (is "?L = ?R")
by fast
-context fgraph
+context fforest
begin
lemma finite_subtree:
@@ -1557,19 +1557,6 @@
} thus ?thesis by (auto simp:acyclic_def)
qed
-lemma relpow_mult:
- "((r::'a rel) ^^ m) ^^ n = r ^^ (m*n)"
-proof(induct n arbitrary:m)
- case (Suc k m)
- thus ?case
- proof -
- have h: "(m * k + m) = (m + m * k)" by auto
- show ?thesis
- apply (simp add:Suc relpow_add[symmetric])
- by (unfold h, simp)
- qed
-qed simp
-
lemma compose_relpow_2 [intro, simp]:
assumes "r1 \<subseteq> r"
and "r2 \<subseteq> r"
@@ -1584,6 +1571,19 @@
} thus ?thesis by (auto simp:numeral_2_eq_2)
qed
+lemma relpow_mult:
+ "((r::'a rel) ^^ m) ^^ n = r ^^ (m*n)"
+proof(induct n arbitrary:m)
+ case (Suc k m)
+ thus ?case
+ proof -
+ have h: "(m * k + m) = (m + m * k)" by auto
+ show ?thesis
+ apply (simp add:Suc relpow_add[symmetric])
+ by (unfold h, simp)
+ qed
+qed simp
+
lemma acyclic_compose [intro, simp]:
assumes "acyclic r"
and "r1 \<subseteq> r"
@@ -1623,7 +1623,7 @@
show "finite (children r1 ` children r2 x)"
proof(rule finite_imageI)
from h(2) have "x \<in> Range r2" by auto
- from assms(2)[unfolded fgraph_def] this
+ from assms(2)[unfolded fforest_def] this
show "finite (children r2 x)" by auto
qed
next
@@ -1637,7 +1637,7 @@
next
case False
hence "y \<in> Range r1" by (unfold children_def, auto)
- from assms(1)[unfolded fgraph_def] this h1(2)
+ from assms(1)[unfolded fforest_def] this h1(2)
show ?thesis by auto
qed
qed