--- a/Graphs.thy Tue Jun 03 15:00:12 2014 +0100
+++ b/Graphs.thy Mon Jun 09 16:01:28 2014 +0100
@@ -7,49 +7,55 @@
shows "(x, y) \<in> r\<^sup>* \<longleftrightarrow> (x, y) \<in> r\<^sup>+"
using assms by (metis rtrancl_eq_or_trancl)
+(* NOT NEEDED : FIXME *)
lemma trancl_split:
"(a, b) \<in> r^+ \<Longrightarrow> \<exists> c. (a, c) \<in> r"
by (induct rule:trancl_induct, auto)
-lemma unique_minus:
- assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
- and xy: "(x, y) \<in> r"
- and xz: "(x, z) \<in> r^+"
- and neq: "y \<noteq> z"
- shows "(y, z) \<in> r^+"
-by (metis converse_tranclE neq unique xy xz)
+
+section {* Single_Valuedness *}
+
+lemma single_valued_Collect:
+ assumes "single_valuedP r"
+ and "inj f"
+ shows "single_valued {(f x, g y) | x y. r x y}"
+using assms
+unfolding single_valued_def inj_on_def
+apply(auto)
+done
-lemma unique_base:
- assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
- and xy: "(x, y) \<in> r"
- and xz: "(x, z) \<in> r^+"
- and neq_yz: "y \<noteq> z"
- shows "(y, z) \<in> r^+"
-by (metis neq_yz unique unique_minus xy xz)
+lemma single_valued_union:
+ assumes "single_valued r" "single_valued q"
+ and "Domain r \<inter> Domain q = {}"
+ shows "single_valued (r \<union> q)"
+using assms
+unfolding single_valued_def
+by auto
-lemma unique_chain_star:
- assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
- and xy: "(x, y) \<in> r^*"
- and xz: "(x, z) \<in> r^*"
- shows "(y, z) \<in> r^* \<or> (z, y) \<in> r^*"
-thm single_valued_confluent single_valued_def unique xy xz
-by (metis single_valued_confluent single_valued_def unique xy xz)
+lemma single_valuedP_update:
+ assumes "single_valuedP r"
+ shows "single_valuedP (r(x := y))"
+using assms
+oops
-lemma unique_chain:
- assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
+lemma single_valued_confluent2:
+ assumes unique: "single_valued r"
and xy: "(x, y) \<in> r^+"
and xz: "(x, z) \<in> r^+"
and neq_yz: "y \<noteq> z"
shows "(y, z) \<in> r^+ \<or> (z, y) \<in> r^+"
proof -
- have xy_star: "(x, y) \<in> r^*"
- and xz_star: "(x, z) \<in> r^*" using xy xz by simp_all
- from unique_chain_star[OF unique xy_star xz_star]
+ have "(x, y) \<in> r^*" "(x, z) \<in> r^*" using xy xz by simp_all
+ with single_valued_confluent[OF unique]
have "(y, z) \<in> r\<^sup>* \<or> (z, y) \<in> r\<^sup>*" by auto
with neq_yz
- show ?thesis by(auto)
+ show "(y, z) \<in> r^+ \<or> (z, y) \<in> r^+" by simp
qed
+lemmas unique_chain = single_valued_confluent2
+
+
+
definition funof :: "[('a * 'b)set, 'a] => 'b" where
"funof r == (\<lambda>x. THE y. (x, y) \<in> r)"
@@ -64,8 +70,7 @@
"[|r `` {x} \<subseteq> A; single_valued r; x \<in> Domain r|] ==> funof r x \<in> A"
by (force simp add: funof_eq)
-lemma single_valuedP_update:
- shows "single_valuedP r \<Longrightarrow> single_valuedP (r(x := y))"
-oops
+
+
end
\ No newline at end of file