--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Implementation.thy~ Thu Jan 07 08:33:13 2016 +0800
@@ -0,0 +1,1636 @@
+section {*
+ This file contains lemmas used to guide the recalculation of current precedence
+ after every system call (or system operation)
+*}
+theory Implementation
+imports PIPBasics Max RTree
+begin
+
+text {* @{text "the_preced"} is also the same as @{text "preced"}, the only
+ difference is the order of arguemts. *}
+definition "the_preced s th = preced th s"
+
+lemma inj_the_preced:
+ "inj_on (the_preced s) (threads s)"
+ by (metis inj_onI preced_unique the_preced_def)
+
+text {* @{term "the_thread"} extracts thread out of RAG node. *}
+fun the_thread :: "node \<Rightarrow> thread" where
+ "the_thread (Th th) = th"
+
+text {* The following @{text "wRAG"} is the waiting sub-graph of @{text "RAG"}. *}
+definition "wRAG (s::state) = {(Th th, Cs cs) | th cs. waiting s th cs}"
+
+text {* The following @{text "hRAG"} is the holding sub-graph of @{text "RAG"}. *}
+definition "hRAG (s::state) = {(Cs cs, Th th) | th cs. holding s th cs}"
+
+text {* The following lemma splits @{term "RAG"} graph into the above two sub-graphs. *}
+lemma RAG_split: "RAG s = (wRAG s \<union> hRAG s)"
+ by (unfold s_RAG_abv wRAG_def hRAG_def s_waiting_abv
+ s_holding_abv cs_RAG_def, auto)
+
+text {*
+ The following @{text "tRAG"} is the thread-graph derived from @{term "RAG"}.
+ It characterizes the dependency between threads when calculating current
+ precedences. It is defined as the composition of the above two sub-graphs,
+ names @{term "wRAG"} and @{term "hRAG"}.
+ *}
+definition "tRAG s = wRAG s O hRAG s"
+
+(* ccc *)
+
+definition "cp_gen s x =
+ Max ((the_preced s \<circ> the_thread) ` subtree (tRAG s) x)"
+
+lemma tRAG_alt_def:
+ "tRAG s = {(Th th1, Th th2) | th1 th2.
+ \<exists> cs. (Th th1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th2) \<in> RAG s}"
+ by (auto simp:tRAG_def RAG_split wRAG_def hRAG_def)
+
+lemma tRAG_Field:
+ "Field (tRAG s) \<subseteq> Field (RAG s)"
+ by (unfold tRAG_alt_def Field_def, auto)
+
+lemma tRAG_ancestorsE:
+ assumes "x \<in> ancestors (tRAG s) u"
+ obtains th where "x = Th th"
+proof -
+ from assms have "(u, x) \<in> (tRAG s)^+"
+ by (unfold ancestors_def, auto)
+ from tranclE[OF this] obtain c where "(c, x) \<in> tRAG s" by auto
+ then obtain th where "x = Th th"
+ by (unfold tRAG_alt_def, auto)
+ from that[OF this] show ?thesis .
+qed
+
+lemma tRAG_mono:
+ assumes "RAG s' \<subseteq> RAG s"
+ shows "tRAG s' \<subseteq> tRAG s"
+ using assms
+ by (unfold tRAG_alt_def, auto)
+
+lemma holding_next_thI:
+ assumes "holding s th cs"
+ and "length (wq s cs) > 1"
+ obtains th' where "next_th s th cs th'"
+proof -
+ from assms(1)[folded eq_holding, unfolded cs_holding_def]
+ have " th \<in> set (wq s cs) \<and> th = hd (wq s cs)" .
+ then obtain rest where h1: "wq s cs = th#rest"
+ by (cases "wq s cs", auto)
+ with assms(2) have h2: "rest \<noteq> []" by auto
+ let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"
+ have "next_th s th cs ?th'" using h1(1) h2
+ by (unfold next_th_def, auto)
+ from that[OF this] show ?thesis .
+qed
+
+lemma RAG_tRAG_transfer:
+ assumes "vt s'"
+ assumes "RAG s = RAG s' \<union> {(Th th, Cs cs)}"
+ and "(Cs cs, Th th'') \<in> RAG s'"
+ shows "tRAG s = tRAG s' \<union> {(Th th, Th th'')}" (is "?L = ?R")
+proof -
+ interpret vt_s': valid_trace "s'" using assms(1)
+ by (unfold_locales, simp)
+ interpret rtree: rtree "RAG s'"
+ proof
+ show "single_valued (RAG s')"
+ apply (intro_locales)
+ by (unfold single_valued_def,
+ auto intro:vt_s'.unique_RAG)
+
+ show "acyclic (RAG s')"
+ by (rule vt_s'.acyclic_RAG)
+ qed
+ { fix n1 n2
+ assume "(n1, n2) \<in> ?L"
+ from this[unfolded tRAG_alt_def]
+ obtain th1 th2 cs' where
+ h: "n1 = Th th1" "n2 = Th th2"
+ "(Th th1, Cs cs') \<in> RAG s"
+ "(Cs cs', Th th2) \<in> RAG s" by auto
+ from h(4) and assms(2) have cs_in: "(Cs cs', Th th2) \<in> RAG s'" by auto
+ from h(3) and assms(2)
+ have "(Th th1, Cs cs') = (Th th, Cs cs) \<or>
+ (Th th1, Cs cs') \<in> RAG s'" by auto
+ hence "(n1, n2) \<in> ?R"
+ proof
+ assume h1: "(Th th1, Cs cs') = (Th th, Cs cs)"
+ hence eq_th1: "th1 = th" by simp
+ moreover have "th2 = th''"
+ proof -
+ from h1 have "cs' = cs" by simp
+ from assms(3) cs_in[unfolded this] rtree.sgv
+ show ?thesis
+ by (unfold single_valued_def, auto)
+ qed
+ ultimately show ?thesis using h(1,2) by auto
+ next
+ assume "(Th th1, Cs cs') \<in> RAG s'"
+ with cs_in have "(Th th1, Th th2) \<in> tRAG s'"
+ by (unfold tRAG_alt_def, auto)
+ from this[folded h(1, 2)] show ?thesis by auto
+ qed
+ } moreover {
+ fix n1 n2
+ assume "(n1, n2) \<in> ?R"
+ hence "(n1, n2) \<in>tRAG s' \<or> (n1, n2) = (Th th, Th th'')" by auto
+ hence "(n1, n2) \<in> ?L"
+ proof
+ assume "(n1, n2) \<in> tRAG s'"
+ moreover have "... \<subseteq> ?L"
+ proof(rule tRAG_mono)
+ show "RAG s' \<subseteq> RAG s" by (unfold assms(2), auto)
+ qed
+ ultimately show ?thesis by auto
+ next
+ assume eq_n: "(n1, n2) = (Th th, Th th'')"
+ from assms(2, 3) have "(Cs cs, Th th'') \<in> RAG s" by auto
+ moreover have "(Th th, Cs cs) \<in> RAG s" using assms(2) by auto
+ ultimately show ?thesis
+ by (unfold eq_n tRAG_alt_def, auto)
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+context valid_trace
+begin
+
+lemmas RAG_tRAG_transfer = RAG_tRAG_transfer[OF vt]
+
+end
+
+lemma cp_alt_def:
+ "cp s th =
+ Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})"
+proof -
+ have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) =
+ Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
+ (is "Max (_ ` ?L) = Max (_ ` ?R)")
+ proof -
+ have "?L = ?R"
+ by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def)
+ thus ?thesis by simp
+ qed
+ thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp)
+qed
+
+lemma cp_gen_alt_def:
+ "cp_gen s = (Max \<circ> (\<lambda>x. (the_preced s \<circ> the_thread) ` subtree (tRAG s) x))"
+ by (auto simp:cp_gen_def)
+
+lemma tRAG_nodeE:
+ assumes "(n1, n2) \<in> tRAG s"
+ obtains th1 th2 where "n1 = Th th1" "n2 = Th th2"
+ using assms
+ by (auto simp: tRAG_def wRAG_def hRAG_def tRAG_def)
+
+lemma subtree_nodeE:
+ assumes "n \<in> subtree (tRAG s) (Th th)"
+ obtains th1 where "n = Th th1"
+proof -
+ show ?thesis
+ proof(rule subtreeE[OF assms])
+ assume "n = Th th"
+ from that[OF this] show ?thesis .
+ next
+ assume "Th th \<in> ancestors (tRAG s) n"
+ hence "(n, Th th) \<in> (tRAG s)^+" by (auto simp:ancestors_def)
+ hence "\<exists> th1. n = Th th1"
+ proof(induct)
+ case (base y)
+ from tRAG_nodeE[OF this] show ?case by metis
+ next
+ case (step y z)
+ thus ?case by auto
+ qed
+ with that show ?thesis by auto
+ qed
+qed
+
+lemma tRAG_star_RAG: "(tRAG s)^* \<subseteq> (RAG s)^*"
+proof -
+ have "(wRAG s O hRAG s)^* \<subseteq> (RAG s O RAG s)^*"
+ by (rule rtrancl_mono, auto simp:RAG_split)
+ also have "... \<subseteq> ((RAG s)^*)^*"
+ by (rule rtrancl_mono, auto)
+ also have "... = (RAG s)^*" by simp
+ finally show ?thesis by (unfold tRAG_def, simp)
+qed
+
+lemma tRAG_subtree_RAG: "subtree (tRAG s) x \<subseteq> subtree (RAG s) x"
+proof -
+ { fix a
+ assume "a \<in> subtree (tRAG s) x"
+ hence "(a, x) \<in> (tRAG s)^*" by (auto simp:subtree_def)
+ with tRAG_star_RAG[of s]
+ have "(a, x) \<in> (RAG s)^*" by auto
+ hence "a \<in> subtree (RAG s) x" by (auto simp:subtree_def)
+ } thus ?thesis by auto
+qed
+
+lemma tRAG_trancl_eq:
+ "{th'. (Th th', Th th) \<in> (tRAG s)^+} =
+ {th'. (Th th', Th th) \<in> (RAG s)^+}"
+ (is "?L = ?R")
+proof -
+ { fix th'
+ assume "th' \<in> ?L"
+ hence "(Th th', Th th) \<in> (tRAG s)^+" by auto
+ from tranclD[OF this]
+ obtain z where h: "(Th th', z) \<in> tRAG s" "(z, Th th) \<in> (tRAG s)\<^sup>*" by auto
+ from tRAG_subtree_RAG[of s] and this(2)
+ have "(z, Th th) \<in> (RAG s)^*" by (meson subsetCE tRAG_star_RAG)
+ moreover from h(1) have "(Th th', z) \<in> (RAG s)^+" using tRAG_alt_def by auto
+ ultimately have "th' \<in> ?R" by auto
+ } moreover
+ { fix th'
+ assume "th' \<in> ?R"
+ hence "(Th th', Th th) \<in> (RAG s)^+" by (auto)
+ from plus_rpath[OF this]
+ obtain xs where rp: "rpath (RAG s) (Th th') xs (Th th)" "xs \<noteq> []" by auto
+ hence "(Th th', Th th) \<in> (tRAG s)^+"
+ proof(induct xs arbitrary:th' th rule:length_induct)
+ case (1 xs th' th)
+ then obtain x1 xs1 where Cons1: "xs = x1#xs1" by (cases xs, auto)
+ show ?case
+ proof(cases "xs1")
+ case Nil
+ from 1(2)[unfolded Cons1 Nil]
+ have rp: "rpath (RAG s) (Th th') [x1] (Th th)" .
+ hence "(Th th', x1) \<in> (RAG s)" by (cases, simp)
+ then obtain cs where "x1 = Cs cs"
+ by (unfold s_RAG_def, auto)
+ from rpath_nnl_lastE[OF rp[unfolded this]]
+ show ?thesis by auto
+ next
+ case (Cons x2 xs2)
+ from 1(2)[unfolded Cons1[unfolded this]]
+ have rp: "rpath (RAG s) (Th th') (x1 # x2 # xs2) (Th th)" .
+ from rpath_edges_on[OF this]
+ have eds: "edges_on (Th th' # x1 # x2 # xs2) \<subseteq> RAG s" .
+ have "(Th th', x1) \<in> edges_on (Th th' # x1 # x2 # xs2)"
+ by (simp add: edges_on_unfold)
+ with eds have rg1: "(Th th', x1) \<in> RAG s" by auto
+ then obtain cs1 where eq_x1: "x1 = Cs cs1" by (unfold s_RAG_def, auto)
+ have "(x1, x2) \<in> edges_on (Th th' # x1 # x2 # xs2)"
+ by (simp add: edges_on_unfold)
+ from this eds
+ have rg2: "(x1, x2) \<in> RAG s" by auto
+ from this[unfolded eq_x1]
+ obtain th1 where eq_x2: "x2 = Th th1" by (unfold s_RAG_def, auto)
+ from rg1[unfolded eq_x1] rg2[unfolded eq_x1 eq_x2]
+ have rt1: "(Th th', Th th1) \<in> tRAG s" by (unfold tRAG_alt_def, auto)
+ from rp have "rpath (RAG s) x2 xs2 (Th th)"
+ by (elim rpath_ConsE, simp)
+ from this[unfolded eq_x2] have rp': "rpath (RAG s) (Th th1) xs2 (Th th)" .
+ show ?thesis
+ proof(cases "xs2 = []")
+ case True
+ from rpath_nilE[OF rp'[unfolded this]]
+ have "th1 = th" by auto
+ from rt1[unfolded this] show ?thesis by auto
+ next
+ case False
+ from 1(1)[rule_format, OF _ rp' this, unfolded Cons1 Cons]
+ have "(Th th1, Th th) \<in> (tRAG s)\<^sup>+" by simp
+ with rt1 show ?thesis by auto
+ qed
+ qed
+ qed
+ hence "th' \<in> ?L" by auto
+ } ultimately show ?thesis by blast
+qed
+
+lemma tRAG_trancl_eq_Th:
+ "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} =
+ {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}"
+ using tRAG_trancl_eq by auto
+
+lemma dependants_alt_def:
+ "dependants s th = {th'. (Th th', Th th) \<in> (tRAG s)^+}"
+ by (metis eq_RAG s_dependants_def tRAG_trancl_eq)
+
+context valid_trace
+begin
+
+lemma count_eq_tRAG_plus:
+ assumes "cntP s th = cntV s th"
+ shows "{th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
+ using assms count_eq_dependants dependants_alt_def eq_dependants by auto
+
+lemma count_eq_RAG_plus:
+ assumes "cntP s th = cntV s th"
+ shows "{th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
+ using assms count_eq_dependants cs_dependants_def eq_RAG by auto
+
+lemma count_eq_RAG_plus_Th:
+ assumes "cntP s th = cntV s th"
+ shows "{Th th' | th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
+ using count_eq_RAG_plus[OF assms] by auto
+
+lemma count_eq_tRAG_plus_Th:
+ assumes "cntP s th = cntV s th"
+ shows "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
+ using count_eq_tRAG_plus[OF assms] by auto
+
+end
+
+lemma tRAG_subtree_eq:
+ "(subtree (tRAG s) (Th th)) = {Th th' | th'. Th th' \<in> (subtree (RAG s) (Th th))}"
+ (is "?L = ?R")
+proof -
+ { fix n
+ assume h: "n \<in> ?L"
+ hence "n \<in> ?R"
+ by (smt mem_Collect_eq subsetCE subtree_def subtree_nodeE tRAG_subtree_RAG)
+ } moreover {
+ fix n
+ assume "n \<in> ?R"
+ then obtain th' where h: "n = Th th'" "(Th th', Th th) \<in> (RAG s)^*"
+ by (auto simp:subtree_def)
+ from rtranclD[OF this(2)]
+ have "n \<in> ?L"
+ proof
+ assume "Th th' \<noteq> Th th \<and> (Th th', Th th) \<in> (RAG s)\<^sup>+"
+ with h have "n \<in> {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}" by auto
+ thus ?thesis using subtree_def tRAG_trancl_eq by fastforce
+ qed (insert h, auto simp:subtree_def)
+ } ultimately show ?thesis by auto
+qed
+
+lemma threads_set_eq:
+ "the_thread ` (subtree (tRAG s) (Th th)) =
+ {th'. Th th' \<in> (subtree (RAG s) (Th th))}" (is "?L = ?R")
+ by (auto intro:rev_image_eqI simp:tRAG_subtree_eq)
+
+lemma cp_alt_def1:
+ "cp s th = Max ((the_preced s o the_thread) ` (subtree (tRAG s) (Th th)))"
+proof -
+ have "(the_preced s ` the_thread ` subtree (tRAG s) (Th th)) =
+ ((the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th))"
+ by auto
+ thus ?thesis by (unfold cp_alt_def, fold threads_set_eq, auto)
+qed
+
+lemma cp_gen_def_cond:
+ assumes "x = Th th"
+ shows "cp s th = cp_gen s (Th th)"
+by (unfold cp_alt_def1 cp_gen_def, simp)
+
+lemma cp_gen_over_set:
+ assumes "\<forall> x \<in> A. \<exists> th. x = Th th"
+ shows "cp_gen s ` A = (cp s \<circ> the_thread) ` A"
+proof(rule f_image_eq)
+ fix a
+ assume "a \<in> A"
+ from assms[rule_format, OF this]
+ obtain th where eq_a: "a = Th th" by auto
+ show "cp_gen s a = (cp s \<circ> the_thread) a"
+ by (unfold eq_a, simp, unfold cp_gen_def_cond[OF refl[of "Th th"]], simp)
+qed
+
+
+context valid_trace
+begin
+
+lemma RAG_threads:
+ assumes "(Th th) \<in> Field (RAG s)"
+ shows "th \<in> threads s"
+ using assms
+ by (metis Field_def UnE dm_RAG_threads range_in vt)
+
+lemma subtree_tRAG_thread:
+ assumes "th \<in> threads s"
+ shows "subtree (tRAG s) (Th th) \<subseteq> Th ` threads s" (is "?L \<subseteq> ?R")
+proof -
+ have "?L = {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
+ by (unfold tRAG_subtree_eq, simp)
+ also have "... \<subseteq> ?R"
+ proof
+ fix x
+ assume "x \<in> {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
+ then obtain th' where h: "x = Th th'" "Th th' \<in> subtree (RAG s) (Th th)" by auto
+ from this(2)
+ show "x \<in> ?R"
+ proof(cases rule:subtreeE)
+ case 1
+ thus ?thesis by (simp add: assms h(1))
+ next
+ case 2
+ thus ?thesis by (metis ancestors_Field dm_RAG_threads h(1) image_eqI)
+ qed
+ qed
+ finally show ?thesis .
+qed
+
+lemma readys_root:
+ assumes "th \<in> readys s"
+ shows "root (RAG s) (Th th)"
+proof -
+ { fix x
+ assume "x \<in> ancestors (RAG s) (Th th)"
+ hence h: "(Th th, x) \<in> (RAG s)^+" by (auto simp:ancestors_def)
+ from tranclD[OF this]
+ obtain z where "(Th th, z) \<in> RAG s" by auto
+ with assms(1) have False
+ apply (case_tac z, auto simp:readys_def s_RAG_def s_waiting_def cs_waiting_def)
+ by (fold wq_def, blast)
+ } thus ?thesis by (unfold root_def, auto)
+qed
+
+lemma readys_in_no_subtree:
+ assumes "th \<in> readys s"
+ and "th' \<noteq> th"
+ shows "Th th \<notin> subtree (RAG s) (Th th')"
+proof
+ assume "Th th \<in> subtree (RAG s) (Th th')"
+ thus False
+ proof(cases rule:subtreeE)
+ case 1
+ with assms show ?thesis by auto
+ next
+ case 2
+ with readys_root[OF assms(1)]
+ show ?thesis by (auto simp:root_def)
+ qed
+qed
+
+lemma not_in_thread_isolated:
+ assumes "th \<notin> threads s"
+ shows "(Th th) \<notin> Field (RAG s)"
+proof
+ assume "(Th th) \<in> Field (RAG s)"
+ with dm_RAG_threads and range_in assms
+ show False by (unfold Field_def, blast)
+qed
+
+lemma wf_RAG: "wf (RAG s)"
+proof(rule finite_acyclic_wf)
+ from finite_RAG show "finite (RAG s)" .
+next
+ from acyclic_RAG show "acyclic (RAG s)" .
+qed
+
+lemma sgv_wRAG: "single_valued (wRAG s)"
+ using waiting_unique
+ by (unfold single_valued_def wRAG_def, auto)
+
+lemma sgv_hRAG: "single_valued (hRAG s)"
+ using holding_unique
+ by (unfold single_valued_def hRAG_def, auto)
+
+lemma sgv_tRAG: "single_valued (tRAG s)"
+ by (unfold tRAG_def, rule single_valued_relcomp,
+ insert sgv_wRAG sgv_hRAG, auto)
+
+lemma acyclic_tRAG: "acyclic (tRAG s)"
+proof(unfold tRAG_def, rule acyclic_compose)
+ show "acyclic (RAG s)" using acyclic_RAG .
+next
+ show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto
+next
+ show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto
+qed
+
+lemma sgv_RAG: "single_valued (RAG s)"
+ using unique_RAG by (auto simp:single_valued_def)
+
+lemma rtree_RAG: "rtree (RAG s)"
+ using sgv_RAG acyclic_RAG
+ by (unfold rtree_def rtree_axioms_def sgv_def, auto)
+
+end
+
+
+sublocale valid_trace < rtree_RAG: rtree "RAG s"
+proof
+ show "single_valued (RAG s)"
+ apply (intro_locales)
+ by (unfold single_valued_def,
+ auto intro:unique_RAG)
+
+ show "acyclic (RAG s)"
+ by (rule acyclic_RAG)
+qed
+
+sublocale valid_trace < rtree_s: rtree "tRAG s"
+proof(unfold_locales)
+ from sgv_tRAG show "single_valued (tRAG s)" .
+next
+ from acyclic_tRAG show "acyclic (tRAG s)" .
+qed
+
+sublocale valid_trace < fsbtRAGs : fsubtree "RAG s"
+proof -
+ show "fsubtree (RAG s)"
+ proof(intro_locales)
+ show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] .
+ next
+ show "fsubtree_axioms (RAG s)"
+ proof(unfold fsubtree_axioms_def)
+ from wf_RAG show "wf (RAG s)" .
+ qed
+ qed
+qed
+
+sublocale valid_trace < fsbttRAGs: fsubtree "tRAG s"
+proof -
+ have "fsubtree (tRAG s)"
+ proof -
+ have "fbranch (tRAG s)"
+ proof(unfold tRAG_def, rule fbranch_compose)
+ show "fbranch (wRAG s)"
+ proof(rule finite_fbranchI)
+ from finite_RAG show "finite (wRAG s)"
+ by (unfold RAG_split, auto)
+ qed
+ next
+ show "fbranch (hRAG s)"
+ proof(rule finite_fbranchI)
+ from finite_RAG
+ show "finite (hRAG s)" by (unfold RAG_split, auto)
+ qed
+ qed
+ moreover have "wf (tRAG s)"
+ proof(rule wf_subset)
+ show "wf (RAG s O RAG s)" using wf_RAG
+ by (fold wf_comp_self, simp)
+ next
+ show "tRAG s \<subseteq> (RAG s O RAG s)"
+ by (unfold tRAG_alt_def, auto)
+ qed
+ ultimately show ?thesis
+ by (unfold fsubtree_def fsubtree_axioms_def,auto)
+ qed
+ from this[folded tRAG_def] show "fsubtree (tRAG s)" .
+qed
+
+lemma Max_UNION:
+ assumes "finite A"
+ and "A \<noteq> {}"
+ and "\<forall> M \<in> f ` A. finite M"
+ and "\<forall> M \<in> f ` A. M \<noteq> {}"
+ shows "Max (\<Union>x\<in> A. f x) = Max (Max ` f ` A)" (is "?L = ?R")
+ using assms[simp]
+proof -
+ have "?L = Max (\<Union>(f ` A))"
+ by (fold Union_image_eq, simp)
+ also have "... = ?R"
+ by (subst Max_Union, simp+)
+ finally show ?thesis .
+qed
+
+lemma max_Max_eq:
+ assumes "finite A"
+ and "A \<noteq> {}"
+ and "x = y"
+ shows "max x (Max A) = Max ({y} \<union> A)" (is "?L = ?R")
+proof -
+ have "?R = Max (insert y A)" by simp
+ also from assms have "... = ?L"
+ by (subst Max.insert, simp+)
+ finally show ?thesis by simp
+qed
+
+context valid_trace
+begin
+
+(* ddd *)
+lemma cp_gen_rec:
+ assumes "x = Th th"
+ shows "cp_gen s x = Max ({the_preced s th} \<union> (cp_gen s) ` children (tRAG s) x)"
+proof(cases "children (tRAG s) x = {}")
+ case True
+ show ?thesis
+ by (unfold True cp_gen_def subtree_children, simp add:assms)
+next
+ case False
+ hence [simp]: "children (tRAG s) x \<noteq> {}" by auto
+ note fsbttRAGs.finite_subtree[simp]
+ have [simp]: "finite (children (tRAG s) x)"
+ by (intro rev_finite_subset[OF fsbttRAGs.finite_subtree],
+ rule children_subtree)
+ { fix r x
+ have "subtree r x \<noteq> {}" by (auto simp:subtree_def)
+ } note this[simp]
+ have [simp]: "\<exists>x\<in>children (tRAG s) x. subtree (tRAG s) x \<noteq> {}"
+ proof -
+ from False obtain q where "q \<in> children (tRAG s) x" by blast
+ moreover have "subtree (tRAG s) q \<noteq> {}" by simp
+ ultimately show ?thesis by blast
+ qed
+ have h: "Max ((the_preced s \<circ> the_thread) `
+ ({x} \<union> \<Union>(subtree (tRAG s) ` children (tRAG s) x))) =
+ Max ({the_preced s th} \<union> cp_gen s ` children (tRAG s) x)"
+ (is "?L = ?R")
+ proof -
+ let "Max (?f ` (?A \<union> \<Union> (?g ` ?B)))" = ?L
+ let "Max (_ \<union> (?h ` ?B))" = ?R
+ let ?L1 = "?f ` \<Union>(?g ` ?B)"
+ have eq_Max_L1: "Max ?L1 = Max (?h ` ?B)"
+ proof -
+ have "?L1 = ?f ` (\<Union> x \<in> ?B.(?g x))" by simp
+ also have "... = (\<Union> x \<in> ?B. ?f ` (?g x))" by auto
+ finally have "Max ?L1 = Max ..." by simp
+ also have "... = Max (Max ` (\<lambda>x. ?f ` subtree (tRAG s) x) ` ?B)"
+ by (subst Max_UNION, simp+)
+ also have "... = Max (cp_gen s ` children (tRAG s) x)"
+ by (unfold image_comp cp_gen_alt_def, simp)
+ finally show ?thesis .
+ qed
+ show ?thesis
+ proof -
+ have "?L = Max (?f ` ?A \<union> ?L1)" by simp
+ also have "... = max (the_preced s (the_thread x)) (Max ?L1)"
+ by (subst Max_Un, simp+)
+ also have "... = max (?f x) (Max (?h ` ?B))"
+ by (unfold eq_Max_L1, simp)
+ also have "... =?R"
+ by (rule max_Max_eq, (simp)+, unfold assms, simp)
+ finally show ?thesis .
+ qed
+ qed thus ?thesis
+ by (fold h subtree_children, unfold cp_gen_def, simp)
+qed
+
+lemma cp_rec:
+ "cp s th = Max ({the_preced s th} \<union>
+ (cp s o the_thread) ` children (tRAG s) (Th th))"
+proof -
+ have "Th th = Th th" by simp
+ note h = cp_gen_def_cond[OF this] cp_gen_rec[OF this]
+ show ?thesis
+ proof -
+ have "cp_gen s ` children (tRAG s) (Th th) =
+ (cp s \<circ> the_thread) ` children (tRAG s) (Th th)"
+ proof(rule cp_gen_over_set)
+ show " \<forall>x\<in>children (tRAG s) (Th th). \<exists>th. x = Th th"
+ by (unfold tRAG_alt_def, auto simp:children_def)
+ qed
+ thus ?thesis by (subst (1) h(1), unfold h(2), simp)
+ qed
+qed
+
+end
+
+(* keep *)
+lemma next_th_holding:
+ assumes vt: "vt s"
+ and nxt: "next_th s th cs th'"
+ shows "holding (wq s) th cs"
+proof -
+ from nxt[unfolded next_th_def]
+ obtain rest where h: "wq s cs = th # rest"
+ "rest \<noteq> []"
+ "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
+ thus ?thesis
+ by (unfold cs_holding_def, auto)
+qed
+
+context valid_trace
+begin
+
+lemma next_th_waiting:
+ assumes nxt: "next_th s th cs th'"
+ shows "waiting (wq s) th' cs"
+proof -
+ from nxt[unfolded next_th_def]
+ obtain rest where h: "wq s cs = th # rest"
+ "rest \<noteq> []"
+ "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
+ from wq_distinct[of cs, unfolded h]
+ have dst: "distinct (th # rest)" .
+ have in_rest: "th' \<in> set rest"
+ proof(unfold h, rule someI2)
+ show "distinct rest \<and> set rest = set rest" using dst by auto
+ next
+ fix x assume "distinct x \<and> set x = set rest"
+ with h(2)
+ show "hd x \<in> set (rest)" by (cases x, auto)
+ qed
+ hence "th' \<in> set (wq s cs)" by (unfold h(1), auto)
+ moreover have "th' \<noteq> hd (wq s cs)"
+ by (unfold h(1), insert in_rest dst, auto)
+ ultimately show ?thesis by (auto simp:cs_waiting_def)
+qed
+
+lemma next_th_RAG:
+ assumes nxt: "next_th (s::event list) th cs th'"
+ shows "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s"
+ using vt assms next_th_holding next_th_waiting
+ by (unfold s_RAG_def, simp)
+
+end
+
+-- {* A useless definition *}
+definition cps:: "state \<Rightarrow> (thread \<times> precedence) set"
+where "cps s = {(th, cp s th) | th . th \<in> threads s}"
+
+
+text {* (* ddd *)
+ One beauty of our modelling is that we follow the definitional extension tradition of HOL.
+ The benefit of such a concise and miniature model is that large number of intuitively
+ obvious facts are derived as lemmas, rather than asserted as axioms.
+*}
+
+text {*
+ However, the lemmas in the forthcoming several locales are no longer
+ obvious. These lemmas show how the current precedences should be recalculated
+ after every execution step (in our model, every step is represented by an event,
+ which in turn, represents a system call, or operation). Each operation is
+ treated in a separate locale.
+
+ The complication of current precedence recalculation comes
+ because the changing of RAG needs to be taken into account,
+ in addition to the changing of precedence.
+ The reason RAG changing affects current precedence is that,
+ according to the definition, current precedence
+ of a thread is the maximum of the precedences of its dependants,
+ where the dependants are defined in terms of RAG.
+
+ Therefore, each operation, lemmas concerning the change of the precedences
+ and RAG are derived first, so that the lemmas about
+ current precedence recalculation can be based on.
+*}
+
+text {* (* ddd *)
+ The following locale @{text "step_set_cps"} investigates the recalculation
+ after the @{text "Set"} operation.
+*}
+locale step_set_cps =
+ fixes s' th prio s
+ -- {* @{text "s'"} is the system state before the operation *}
+ -- {* @{text "s"} is the system state after the operation *}
+ defines s_def : "s \<equiv> (Set th prio#s')"
+ -- {* @{text "s"} is assumed to be a legitimate state, from which
+ the legitimacy of @{text "s"} can be derived. *}
+ assumes vt_s: "vt s"
+
+sublocale step_set_cps < vat_s : valid_trace "s"
+proof
+ from vt_s show "vt s" .
+qed
+
+sublocale step_set_cps < vat_s' : valid_trace "s'"
+proof
+ from step_back_vt[OF vt_s[unfolded s_def]] show "vt s'" .
+qed
+
+context step_set_cps
+begin
+
+text {* (* ddd *)
+ The following two lemmas confirm that @{text "Set"}-operating only changes the precedence
+ of the initiating thread.
+*}
+
+lemma eq_preced:
+ assumes "th' \<noteq> th"
+ shows "preced th' s = preced th' s'"
+proof -
+ from assms show ?thesis
+ by (unfold s_def, auto simp:preced_def)
+qed
+
+lemma eq_the_preced:
+ fixes th'
+ assumes "th' \<noteq> th"
+ shows "the_preced s th' = the_preced s' th'"
+ using assms
+ by (unfold the_preced_def, intro eq_preced, simp)
+
+text {*
+ The following lemma assures that the resetting of priority does not change the RAG.
+*}
+
+lemma eq_dep: "RAG s = RAG s'"
+ by (unfold s_def RAG_set_unchanged, auto)
+
+text {* (* ddd *)
+ Th following lemma @{text "eq_cp_pre"} says the priority change of @{text "th"}
+ only affects those threads, which as @{text "Th th"} in their sub-trees.
+
+ The proof of this lemma is simplified by using the alternative definition of @{text "cp"}.
+*}
+
+lemma eq_cp_pre:
+ fixes th'
+ assumes nd: "Th th \<notin> subtree (RAG s') (Th th')"
+ shows "cp s th' = cp s' th'"
+proof -
+ -- {* After unfolding using the alternative definition, elements
+ affecting the @{term "cp"}-value of threads become explicit.
+ We only need to prove the following: *}
+ have "Max (the_preced s ` {th'a. Th th'a \<in> subtree (RAG s) (Th th')}) =
+ Max (the_preced s' ` {th'a. Th th'a \<in> subtree (RAG s') (Th th')})"
+ (is "Max (?f ` ?S1) = Max (?g ` ?S2)")
+ proof -
+ -- {* The base sets are equal. *}
+ have "?S1 = ?S2" using eq_dep by simp
+ -- {* The function values on the base set are equal as well. *}
+ moreover have "\<forall> e \<in> ?S2. ?f e = ?g e"
+ proof
+ fix th1
+ assume "th1 \<in> ?S2"
+ with nd have "th1 \<noteq> th" by (auto)
+ from eq_the_preced[OF this]
+ show "the_preced s th1 = the_preced s' th1" .
+ qed
+ -- {* Therefore, the image of the functions are equal. *}
+ ultimately have "(?f ` ?S1) = (?g ` ?S2)" by (auto intro!:f_image_eq)
+ thus ?thesis by simp
+ qed
+ thus ?thesis by (simp add:cp_alt_def)
+qed
+
+text {*
+ The following lemma shows that @{term "th"} is not in the
+ sub-tree of any other thread.
+*}
+lemma th_in_no_subtree:
+ assumes "th' \<noteq> th"
+ shows "Th th \<notin> subtree (RAG s') (Th th')"
+proof -
+ have "th \<in> readys s'"
+ proof -
+ from step_back_step [OF vt_s[unfolded s_def]]
+ have "step s' (Set th prio)" .
+ hence "th \<in> runing s'" by (cases, simp)
+ thus ?thesis by (simp add:readys_def runing_def)
+ qed
+ from vat_s'.readys_in_no_subtree[OF this assms(1)]
+ show ?thesis by blast
+qed
+
+text {*
+ By combining @{thm "eq_cp_pre"} and @{thm "th_in_no_subtree"},
+ it is obvious that the change of priority only affects the @{text "cp"}-value
+ of the initiating thread @{text "th"}.
+*}
+lemma eq_cp:
+ fixes th'
+ assumes "th' \<noteq> th"
+ shows "cp s th' = cp s' th'"
+ by (rule eq_cp_pre[OF th_in_no_subtree[OF assms]])
+
+end
+
+text {*
+ The following @{text "step_v_cps"} is the locale for @{text "V"}-operation.
+*}
+
+locale step_v_cps =
+ -- {* @{text "th"} is the initiating thread *}
+ -- {* @{text "cs"} is the critical resource release by the @{text "V"}-operation *}
+ fixes s' th cs s -- {* @{text "s'"} is the state before operation*}
+ defines s_def : "s \<equiv> (V th cs#s')" -- {* @{text "s"} is the state after operation*}
+ -- {* @{text "s"} is assumed to be valid, which implies the validity of @{text "s'"} *}
+ assumes vt_s: "vt s"
+
+sublocale step_v_cps < vat_s : valid_trace "s"
+proof
+ from vt_s show "vt s" .
+qed
+
+sublocale step_v_cps < vat_s' : valid_trace "s'"
+proof
+ from step_back_vt[OF vt_s[unfolded s_def]] show "vt s'" .
+qed
+
+context step_v_cps
+begin
+
+lemma ready_th_s': "th \<in> readys s'"
+ using step_back_step[OF vt_s[unfolded s_def]]
+ by (cases, simp add:runing_def)
+
+lemma ancestors_th: "ancestors (RAG s') (Th th) = {}"
+proof -
+ from vat_s'.readys_root[OF ready_th_s']
+ show ?thesis
+ by (unfold root_def, simp)
+qed
+
+lemma holding_th: "holding s' th cs"
+proof -
+ from vt_s[unfolded s_def]
+ have " PIP s' (V th cs)" by (cases, simp)
+ thus ?thesis by (cases, auto)
+qed
+
+lemma edge_of_th:
+ "(Cs cs, Th th) \<in> RAG s'"
+proof -
+ from holding_th
+ show ?thesis
+ by (unfold s_RAG_def holding_eq, auto)
+qed
+
+lemma ancestors_cs:
+ "ancestors (RAG s') (Cs cs) = {Th th}"
+proof -
+ have "ancestors (RAG s') (Cs cs) = ancestors (RAG s') (Th th) \<union> {Th th}"
+ proof(rule vat_s'.rtree_RAG.ancestors_accum)
+ from vt_s[unfolded s_def]
+ have " PIP s' (V th cs)" by (cases, simp)
+ thus "(Cs cs, Th th) \<in> RAG s'"
+ proof(cases)
+ assume "holding s' th cs"
+ from this[unfolded holding_eq]
+ show ?thesis by (unfold s_RAG_def, auto)
+ qed
+ qed
+ from this[unfolded ancestors_th] show ?thesis by simp
+qed
+
+lemma preced_kept: "the_preced s = the_preced s'"
+ by (auto simp: s_def the_preced_def preced_def)
+
+end
+
+text {*
+ The following @{text "step_v_cps_nt"} is the sub-locale for @{text "V"}-operation,
+ which represents the case when there is another thread @{text "th'"}
+ to take over the critical resource released by the initiating thread @{text "th"}.
+*}
+locale step_v_cps_nt = step_v_cps +
+ fixes th'
+ -- {* @{text "th'"} is assumed to take over @{text "cs"} *}
+ assumes nt: "next_th s' th cs th'"
+
+context step_v_cps_nt
+begin
+
+text {*
+ Lemma @{text "RAG_s"} confirms the change of RAG:
+ two edges removed and one added, as shown by the following diagram.
+*}
+
+(*
+ RAG before the V-operation
+ th1 ----|
+ |
+ th' ----|
+ |----> cs -----|
+ th2 ----| |
+ | |
+ th3 ----| |
+ |------> th
+ th4 ----| |
+ | |
+ th5 ----| |
+ |----> cs'-----|
+ th6 ----|
+ |
+ th7 ----|
+
+ RAG after the V-operation
+ th1 ----|
+ |
+ |----> cs ----> th'
+ th2 ----|
+ |
+ th3 ----|
+
+ th4 ----|
+ |
+ th5 ----|
+ |----> cs'----> th
+ th6 ----|
+ |
+ th7 ----|
+*)
+
+lemma sub_RAGs': "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s'"
+ using next_th_RAG[OF nt] .
+
+lemma ancestors_th':
+ "ancestors (RAG s') (Th th') = {Th th, Cs cs}"
+proof -
+ have "ancestors (RAG s') (Th th') = ancestors (RAG s') (Cs cs) \<union> {Cs cs}"
+ proof(rule vat_s'.rtree_RAG.ancestors_accum)
+ from sub_RAGs' show "(Th th', Cs cs) \<in> RAG s'" by auto
+ qed
+ thus ?thesis using ancestors_th ancestors_cs by auto
+qed
+
+lemma RAG_s:
+ "RAG s = (RAG s' - {(Cs cs, Th th), (Th th', Cs cs)}) \<union>
+ {(Cs cs, Th th')}"
+proof -
+ from step_RAG_v[OF vt_s[unfolded s_def], folded s_def]
+ and nt show ?thesis by (auto intro:next_th_unique)
+qed
+
+lemma subtree_kept:
+ assumes "th1 \<notin> {th, th'}"
+ shows "subtree (RAG s) (Th th1) = subtree (RAG s') (Th th1)" (is "_ = ?R")
+proof -
+ let ?RAG' = "(RAG s' - {(Cs cs, Th th), (Th th', Cs cs)})"
+ let ?RAG'' = "?RAG' \<union> {(Cs cs, Th th')}"
+ have "subtree ?RAG' (Th th1) = ?R"
+ proof(rule subset_del_subtree_outside)
+ show "Range {(Cs cs, Th th), (Th th', Cs cs)} \<inter> subtree (RAG s') (Th th1) = {}"
+ proof -
+ have "(Th th) \<notin> subtree (RAG s') (Th th1)"
+ proof(rule subtree_refute)
+ show "Th th1 \<notin> ancestors (RAG s') (Th th)"
+ by (unfold ancestors_th, simp)
+ next
+ from assms show "Th th1 \<noteq> Th th" by simp
+ qed
+ moreover have "(Cs cs) \<notin> subtree (RAG s') (Th th1)"
+ proof(rule subtree_refute)
+ show "Th th1 \<notin> ancestors (RAG s') (Cs cs)"
+ by (unfold ancestors_cs, insert assms, auto)
+ qed simp
+ ultimately have "{Th th, Cs cs} \<inter> subtree (RAG s') (Th th1) = {}" by auto
+ thus ?thesis by simp
+ qed
+ qed
+ moreover have "subtree ?RAG'' (Th th1) = subtree ?RAG' (Th th1)"
+ proof(rule subtree_insert_next)
+ show "Th th' \<notin> subtree (RAG s' - {(Cs cs, Th th), (Th th', Cs cs)}) (Th th1)"
+ proof(rule subtree_refute)
+ show "Th th1 \<notin> ancestors (RAG s' - {(Cs cs, Th th), (Th th', Cs cs)}) (Th th')"
+ (is "_ \<notin> ?R")
+ proof -
+ have "?R \<subseteq> ancestors (RAG s') (Th th')" by (rule ancestors_mono, auto)
+ moreover have "Th th1 \<notin> ..." using ancestors_th' assms by simp
+ ultimately show ?thesis by auto
+ qed
+ next
+ from assms show "Th th1 \<noteq> Th th'" by simp
+ qed
+ qed
+ ultimately show ?thesis by (unfold RAG_s, simp)
+qed
+
+lemma cp_kept:
+ assumes "th1 \<notin> {th, th'}"
+ shows "cp s th1 = cp s' th1"
+ by (unfold cp_alt_def preced_kept subtree_kept[OF assms], simp)
+
+end
+
+locale step_v_cps_nnt = step_v_cps +
+ assumes nnt: "\<And> th'. (\<not> next_th s' th cs th')"
+
+context step_v_cps_nnt
+begin
+
+lemma RAG_s: "RAG s = RAG s' - {(Cs cs, Th th)}"
+proof -
+ from nnt and step_RAG_v[OF vt_s[unfolded s_def], folded s_def]
+ show ?thesis by auto
+qed
+
+lemma subtree_kept:
+ assumes "th1 \<noteq> th"
+ shows "subtree (RAG s) (Th th1) = subtree (RAG s') (Th th1)"
+proof(unfold RAG_s, rule subset_del_subtree_outside)
+ show "Range {(Cs cs, Th th)} \<inter> subtree (RAG s') (Th th1) = {}"
+ proof -
+ have "(Th th) \<notin> subtree (RAG s') (Th th1)"
+ proof(rule subtree_refute)
+ show "Th th1 \<notin> ancestors (RAG s') (Th th)"
+ by (unfold ancestors_th, simp)
+ next
+ from assms show "Th th1 \<noteq> Th th" by simp
+ qed
+ thus ?thesis by auto
+ qed
+qed
+
+lemma cp_kept_1:
+ assumes "th1 \<noteq> th"
+ shows "cp s th1 = cp s' th1"
+ by (unfold cp_alt_def preced_kept subtree_kept[OF assms], simp)
+
+lemma subtree_cs: "subtree (RAG s') (Cs cs) = {Cs cs}"
+proof -
+ { fix n
+ have "(Cs cs) \<notin> ancestors (RAG s') n"
+ proof
+ assume "Cs cs \<in> ancestors (RAG s') n"
+ hence "(n, Cs cs) \<in> (RAG s')^+" by (auto simp:ancestors_def)
+ from tranclE[OF this] obtain nn where h: "(nn, Cs cs) \<in> RAG s'" by auto
+ then obtain th' where "nn = Th th'"
+ by (unfold s_RAG_def, auto)
+ from h[unfolded this] have "(Th th', Cs cs) \<in> RAG s'" .
+ from this[unfolded s_RAG_def]
+ have "waiting (wq s') th' cs" by auto
+ from this[unfolded cs_waiting_def]
+ have "1 < length (wq s' cs)"
+ by (cases "wq s' cs", auto)
+ from holding_next_thI[OF holding_th this]
+ obtain th' where "next_th s' th cs th'" by auto
+ with nnt show False by auto
+ qed
+ } note h = this
+ { fix n
+ assume "n \<in> subtree (RAG s') (Cs cs)"
+ hence "n = (Cs cs)"
+ by (elim subtreeE, insert h, auto)
+ } moreover have "(Cs cs) \<in> subtree (RAG s') (Cs cs)"
+ by (auto simp:subtree_def)
+ ultimately show ?thesis by auto
+qed
+
+lemma subtree_th:
+ "subtree (RAG s) (Th th) = subtree (RAG s') (Th th) - {Cs cs}"
+proof(unfold RAG_s, fold subtree_cs, rule vat_s'.rtree_RAG.subtree_del_inside)
+ from edge_of_th
+ show "(Cs cs, Th th) \<in> edges_in (RAG s') (Th th)"
+ by (unfold edges_in_def, auto simp:subtree_def)
+qed
+
+lemma cp_kept_2:
+ shows "cp s th = cp s' th"
+ by (unfold cp_alt_def subtree_th preced_kept, auto)
+
+lemma eq_cp:
+ fixes th'
+ shows "cp s th' = cp s' th'"
+ using cp_kept_1 cp_kept_2
+ by (cases "th' = th", auto)
+end
+
+
+locale step_P_cps =
+ fixes s' th cs s
+ defines s_def : "s \<equiv> (P th cs#s')"
+ assumes vt_s: "vt s"
+
+sublocale step_P_cps < vat_s : valid_trace "s"
+proof
+ from vt_s show "vt s" .
+qed
+
+sublocale step_P_cps < vat_s' : valid_trace "s'"
+proof
+ from step_back_vt[OF vt_s[unfolded s_def]] show "vt s'" .
+qed
+
+context step_P_cps
+begin
+
+lemma readys_th: "th \<in> readys s'"
+proof -
+ from step_back_step [OF vt_s[unfolded s_def]]
+ have "PIP s' (P th cs)" .
+ hence "th \<in> runing s'" by (cases, simp)
+ thus ?thesis by (simp add:readys_def runing_def)
+qed
+
+lemma root_th: "root (RAG s') (Th th)"
+ using readys_root[OF readys_th] .
+
+lemma in_no_others_subtree:
+ assumes "th' \<noteq> th"
+ shows "Th th \<notin> subtree (RAG s') (Th th')"
+proof
+ assume "Th th \<in> subtree (RAG s') (Th th')"
+ thus False
+ proof(cases rule:subtreeE)
+ case 1
+ with assms show ?thesis by auto
+ next
+ case 2
+ with root_th show ?thesis by (auto simp:root_def)
+ qed
+qed
+
+lemma preced_kept: "the_preced s = the_preced s'"
+ by (auto simp: s_def the_preced_def preced_def)
+
+end
+
+locale step_P_cps_ne =step_P_cps +
+ fixes th'
+ assumes ne: "wq s' cs \<noteq> []"
+ defines th'_def: "th' \<equiv> hd (wq s' cs)"
+
+locale step_P_cps_e =step_P_cps +
+ assumes ee: "wq s' cs = []"
+
+context step_P_cps_e
+begin
+
+lemma RAG_s: "RAG s = RAG s' \<union> {(Cs cs, Th th)}"
+proof -
+ from ee and step_RAG_p[OF vt_s[unfolded s_def], folded s_def]
+ show ?thesis by auto
+qed
+
+lemma subtree_kept:
+ assumes "th' \<noteq> th"
+ shows "subtree (RAG s) (Th th') = subtree (RAG s') (Th th')"
+proof(unfold RAG_s, rule subtree_insert_next)
+ from in_no_others_subtree[OF assms]
+ show "Th th \<notin> subtree (RAG s') (Th th')" .
+qed
+
+lemma cp_kept:
+ assumes "th' \<noteq> th"
+ shows "cp s th' = cp s' th'"
+proof -
+ have "(the_preced s ` {th'a. Th th'a \<in> subtree (RAG s) (Th th')}) =
+ (the_preced s' ` {th'a. Th th'a \<in> subtree (RAG s') (Th th')})"
+ by (unfold preced_kept subtree_kept[OF assms], simp)
+ thus ?thesis by (unfold cp_alt_def, simp)
+qed
+
+end
+
+context step_P_cps_ne
+begin
+
+lemma RAG_s: "RAG s = RAG s' \<union> {(Th th, Cs cs)}"
+proof -
+ from step_RAG_p[OF vt_s[unfolded s_def]] and ne
+ show ?thesis by (simp add:s_def)
+qed
+
+lemma cs_held: "(Cs cs, Th th') \<in> RAG s'"
+proof -
+ have "(Cs cs, Th th') \<in> hRAG s'"
+ proof -
+ from ne
+ have " holding s' th' cs"
+ by (unfold th'_def holding_eq cs_holding_def, auto)
+ thus ?thesis
+ by (unfold hRAG_def, auto)
+ qed
+ thus ?thesis by (unfold RAG_split, auto)
+qed
+
+lemma tRAG_s:
+ "tRAG s = tRAG s' \<union> {(Th th, Th th')}"
+ using RAG_tRAG_transfer[OF RAG_s cs_held] .
+
+lemma cp_kept:
+ assumes "Th th'' \<notin> ancestors (tRAG s) (Th th)"
+ shows "cp s th'' = cp s' th''"
+proof -
+ have h: "subtree (tRAG s) (Th th'') = subtree (tRAG s') (Th th'')"
+ proof -
+ have "Th th' \<notin> subtree (tRAG s') (Th th'')"
+ proof
+ assume "Th th' \<in> subtree (tRAG s') (Th th'')"
+ thus False
+ proof(rule subtreeE)
+ assume "Th th' = Th th''"
+ from assms[unfolded tRAG_s ancestors_def, folded this]
+ show ?thesis by auto
+ next
+ assume "Th th'' \<in> ancestors (tRAG s') (Th th')"
+ moreover have "... \<subseteq> ancestors (tRAG s) (Th th')"
+ proof(rule ancestors_mono)
+ show "tRAG s' \<subseteq> tRAG s" by (unfold tRAG_s, auto)
+ qed
+ ultimately have "Th th'' \<in> ancestors (tRAG s) (Th th')" by auto
+ moreover have "Th th' \<in> ancestors (tRAG s) (Th th)"
+ by (unfold tRAG_s, auto simp:ancestors_def)
+ ultimately have "Th th'' \<in> ancestors (tRAG s) (Th th)"
+ by (auto simp:ancestors_def)
+ with assms show ?thesis by auto
+ qed
+ qed
+ from subtree_insert_next[OF this]
+ have "subtree (tRAG s' \<union> {(Th th, Th th')}) (Th th'') = subtree (tRAG s') (Th th'')" .
+ from this[folded tRAG_s] show ?thesis .
+ qed
+ show ?thesis by (unfold cp_alt_def1 h preced_kept, simp)
+qed
+
+lemma cp_gen_update_stop: (* ddd *)
+ assumes "u \<in> ancestors (tRAG s) (Th th)"
+ and "cp_gen s u = cp_gen s' u"
+ and "y \<in> ancestors (tRAG s) u"
+ shows "cp_gen s y = cp_gen s' y"
+ using assms(3)
+proof(induct rule:wf_induct[OF vat_s.fsbttRAGs.wf])
+ case (1 x)
+ show ?case (is "?L = ?R")
+ proof -
+ from tRAG_ancestorsE[OF 1(2)]
+ obtain th2 where eq_x: "x = Th th2" by blast
+ from vat_s.cp_gen_rec[OF this]
+ have "?L =
+ Max ({the_preced s th2} \<union> cp_gen s ` RTree.children (tRAG s) x)" .
+ also have "... =
+ Max ({the_preced s' th2} \<union> cp_gen s' ` RTree.children (tRAG s') x)"
+
+ proof -
+ from preced_kept have "the_preced s th2 = the_preced s' th2" by simp
+ moreover have "cp_gen s ` RTree.children (tRAG s) x =
+ cp_gen s' ` RTree.children (tRAG s') x"
+ proof -
+ have "RTree.children (tRAG s) x = RTree.children (tRAG s') x"
+ proof(unfold tRAG_s, rule children_union_kept)
+ have start: "(Th th, Th th') \<in> tRAG s"
+ by (unfold tRAG_s, auto)
+ note x_u = 1(2)
+ show "x \<notin> Range {(Th th, Th th')}"
+ proof
+ assume "x \<in> Range {(Th th, Th th')}"
+ hence eq_x: "x = Th th'" using RangeE by auto
+ show False
+ proof(cases rule:vat_s.rtree_s.ancestors_headE[OF assms(1) start])
+ case 1
+ from x_u[folded this, unfolded eq_x] vat_s.acyclic_tRAG
+ show ?thesis by (auto simp:ancestors_def acyclic_def)
+ next
+ case 2
+ with x_u[unfolded eq_x]
+ have "(Th th', Th th') \<in> (tRAG s)^+" by (auto simp:ancestors_def)
+ with vat_s.acyclic_tRAG show ?thesis by (auto simp:acyclic_def)
+ qed
+ qed
+ qed
+ moreover have "cp_gen s ` RTree.children (tRAG s) x =
+ cp_gen s' ` RTree.children (tRAG s) x" (is "?f ` ?A = ?g ` ?A")
+ proof(rule f_image_eq)
+ fix a
+ assume a_in: "a \<in> ?A"
+ from 1(2)
+ show "?f a = ?g a"
+ proof(cases rule:vat_s.rtree_s.ancestors_childrenE[case_names in_ch out_ch])
+ case in_ch
+ show ?thesis
+ proof(cases "a = u")
+ case True
+ from assms(2)[folded this] show ?thesis .
+ next
+ case False
+ have a_not_in: "a \<notin> ancestors (tRAG s) (Th th)"
+ proof
+ assume a_in': "a \<in> ancestors (tRAG s) (Th th)"
+ have "a = u"
+ proof(rule vat_s.rtree_s.ancestors_children_unique)
+ from a_in' a_in show "a \<in> ancestors (tRAG s) (Th th) \<inter>
+ RTree.children (tRAG s) x" by auto
+ next
+ from assms(1) in_ch show "u \<in> ancestors (tRAG s) (Th th) \<inter>
+ RTree.children (tRAG s) x" by auto
+ qed
+ with False show False by simp
+ qed
+ from a_in obtain th_a where eq_a: "a = Th th_a"
+ by (unfold RTree.children_def tRAG_alt_def, auto)
+ from cp_kept[OF a_not_in[unfolded eq_a]]
+ have "cp s th_a = cp s' th_a" .
+ from this [unfolded cp_gen_def_cond[OF eq_a], folded eq_a]
+ show ?thesis .
+ qed
+ next
+ case (out_ch z)
+ hence h: "z \<in> ancestors (tRAG s) u" "z \<in> RTree.children (tRAG s) x" by auto
+ show ?thesis
+ proof(cases "a = z")
+ case True
+ from h(2) have zx_in: "(z, x) \<in> (tRAG s)" by (auto simp:RTree.children_def)
+ from 1(1)[rule_format, OF this h(1)]
+ have eq_cp_gen: "cp_gen s z = cp_gen s' z" .
+ with True show ?thesis by metis
+ next
+ case False
+ from a_in obtain th_a where eq_a: "a = Th th_a"
+ by (auto simp:RTree.children_def tRAG_alt_def)
+ have "a \<notin> ancestors (tRAG s) (Th th)"
+ proof
+ assume a_in': "a \<in> ancestors (tRAG s) (Th th)"
+ have "a = z"
+ proof(rule vat_s.rtree_s.ancestors_children_unique)
+ from assms(1) h(1) have "z \<in> ancestors (tRAG s) (Th th)"
+ by (auto simp:ancestors_def)
+ with h(2) show " z \<in> ancestors (tRAG s) (Th th) \<inter>
+ RTree.children (tRAG s) x" by auto
+ next
+ from a_in a_in'
+ show "a \<in> ancestors (tRAG s) (Th th) \<inter> RTree.children (tRAG s) x"
+ by auto
+ qed
+ with False show False by auto
+ qed
+ from cp_kept[OF this[unfolded eq_a]]
+ have "cp s th_a = cp s' th_a" .
+ from this[unfolded cp_gen_def_cond[OF eq_a], folded eq_a]
+ show ?thesis .
+ qed
+ qed
+ qed
+ ultimately show ?thesis by metis
+ qed
+ ultimately show ?thesis by simp
+ qed
+ also have "... = ?R"
+ by (fold vat_s'.cp_gen_rec[OF eq_x], simp)
+ finally show ?thesis .
+ qed
+qed
+
+lemma cp_up:
+ assumes "(Th th') \<in> ancestors (tRAG s) (Th th)"
+ and "cp s th' = cp s' th'"
+ and "(Th th'') \<in> ancestors (tRAG s) (Th th')"
+ shows "cp s th'' = cp s' th''"
+proof -
+ have "cp_gen s (Th th'') = cp_gen s' (Th th'')"
+ proof(rule cp_gen_update_stop[OF assms(1) _ assms(3)])
+ from assms(2) cp_gen_def_cond[OF refl[of "Th th'"]]
+ show "cp_gen s (Th th') = cp_gen s' (Th th')" by metis
+ qed
+ with cp_gen_def_cond[OF refl[of "Th th''"]]
+ show ?thesis by metis
+qed
+
+end
+
+locale step_create_cps =
+ fixes s' th prio s
+ defines s_def : "s \<equiv> (Create th prio#s')"
+ assumes vt_s: "vt s"
+
+sublocale step_create_cps < vat_s: valid_trace "s"
+ by (unfold_locales, insert vt_s, simp)
+
+sublocale step_create_cps < vat_s': valid_trace "s'"
+ by (unfold_locales, insert step_back_vt[OF vt_s[unfolded s_def]], simp)
+
+context step_create_cps
+begin
+
+lemma RAG_kept: "RAG s = RAG s'"
+ by (unfold s_def RAG_create_unchanged, auto)
+
+lemma tRAG_kept: "tRAG s = tRAG s'"
+ by (unfold tRAG_alt_def RAG_kept, auto)
+
+lemma preced_kept:
+ assumes "th' \<noteq> th"
+ shows "the_preced s th' = the_preced s' th'"
+ by (unfold s_def the_preced_def preced_def, insert assms, auto)
+
+lemma th_not_in: "Th th \<notin> Field (tRAG s')"
+proof -
+ from vt_s[unfolded s_def]
+ have "PIP s' (Create th prio)" by (cases, simp)
+ hence "th \<notin> threads s'" by(cases, simp)
+ from vat_s'.not_in_thread_isolated[OF this]
+ have "Th th \<notin> Field (RAG s')" .
+ with tRAG_Field show ?thesis by auto
+qed
+
+lemma eq_cp:
+ assumes neq_th: "th' \<noteq> th"
+ shows "cp s th' = cp s' th'"
+proof -
+ have "(the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th') =
+ (the_preced s' \<circ> the_thread) ` subtree (tRAG s') (Th th')"
+ proof(unfold tRAG_kept, rule f_image_eq)
+ fix a
+ assume a_in: "a \<in> subtree (tRAG s') (Th th')"
+ then obtain th_a where eq_a: "a = Th th_a"
+ proof(cases rule:subtreeE)
+ case 2
+ from ancestors_Field[OF 2(2)]
+ and that show ?thesis by (unfold tRAG_alt_def, auto)
+ qed auto
+ have neq_th_a: "th_a \<noteq> th"
+ proof -
+ have "(Th th) \<notin> subtree (tRAG s') (Th th')"
+ proof
+ assume "Th th \<in> subtree (tRAG s') (Th th')"
+ thus False
+ proof(cases rule:subtreeE)
+ case 2
+ from ancestors_Field[OF this(2)]
+ and th_not_in[unfolded Field_def]
+ show ?thesis by auto
+ qed (insert assms, auto)
+ qed
+ with a_in[unfolded eq_a] show ?thesis by auto
+ qed
+ from preced_kept[OF this]
+ show "(the_preced s \<circ> the_thread) a = (the_preced s' \<circ> the_thread) a"
+ by (unfold eq_a, simp)
+ qed
+ thus ?thesis by (unfold cp_alt_def1, simp)
+qed
+
+lemma children_of_th: "RTree.children (tRAG s) (Th th) = {}"
+proof -
+ { fix a
+ assume "a \<in> RTree.children (tRAG s) (Th th)"
+ hence "(a, Th th) \<in> tRAG s" by (auto simp:RTree.children_def)
+ with th_not_in have False
+ by (unfold Field_def tRAG_kept, auto)
+ } thus ?thesis by auto
+qed
+
+lemma eq_cp_th: "cp s th = preced th s"
+ by (unfold vat_s.cp_rec children_of_th, simp add:the_preced_def)
+
+end
+
+locale step_exit_cps =
+ fixes s' th prio s
+ defines s_def : "s \<equiv> Exit th # s'"
+ assumes vt_s: "vt s"
+
+sublocale step_exit_cps < vat_s: valid_trace "s"
+ by (unfold_locales, insert vt_s, simp)
+
+sublocale step_exit_cps < vat_s': valid_trace "s'"
+ by (unfold_locales, insert step_back_vt[OF vt_s[unfolded s_def]], simp)
+
+context step_exit_cps
+begin
+
+lemma preced_kept:
+ assumes "th' \<noteq> th"
+ shows "the_preced s th' = the_preced s' th'"
+ by (unfold s_def the_preced_def preced_def, insert assms, auto)
+
+lemma RAG_kept: "RAG s = RAG s'"
+ by (unfold s_def RAG_exit_unchanged, auto)
+
+lemma tRAG_kept: "tRAG s = tRAG s'"
+ by (unfold tRAG_alt_def RAG_kept, auto)
+
+lemma th_ready: "th \<in> readys s'"
+proof -
+ from vt_s[unfolded s_def]
+ have "PIP s' (Exit th)" by (cases, simp)
+ hence h: "th \<in> runing s' \<and> holdents s' th = {}" by (cases, metis)
+ thus ?thesis by (unfold runing_def, auto)
+qed
+
+lemma th_holdents: "holdents s' th = {}"
+proof -
+ from vt_s[unfolded s_def]
+ have "PIP s' (Exit th)" by (cases, simp)
+ thus ?thesis by (cases, metis)
+qed
+
+lemma th_RAG: "Th th \<notin> Field (RAG s')"
+proof -
+ have "Th th \<notin> Range (RAG s')"
+ proof
+ assume "Th th \<in> Range (RAG s')"
+ then obtain cs where "holding (wq s') th cs"
+ by (unfold Range_iff s_RAG_def, auto)
+ with th_holdents[unfolded holdents_def]
+ show False by (unfold eq_holding, auto)
+ qed
+ moreover have "Th th \<notin> Domain (RAG s')"
+ proof
+ assume "Th th \<in> Domain (RAG s')"
+ then obtain cs where "waiting (wq s') th cs"
+ by (unfold Domain_iff s_RAG_def, auto)
+ with th_ready show False by (unfold readys_def eq_waiting, auto)
+ qed
+ ultimately show ?thesis by (auto simp:Field_def)
+qed
+
+lemma th_tRAG: "(Th th) \<notin> Field (tRAG s')"
+ using th_RAG tRAG_Field[of s'] by auto
+
+lemma eq_cp:
+ assumes neq_th: "th' \<noteq> th"
+ shows "cp s th' = cp s' th'"
+proof -
+ have "(the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th') =
+ (the_preced s' \<circ> the_thread) ` subtree (tRAG s') (Th th')"
+ proof(unfold tRAG_kept, rule f_image_eq)
+ fix a
+ assume a_in: "a \<in> subtree (tRAG s') (Th th')"
+ then obtain th_a where eq_a: "a = Th th_a"
+ proof(cases rule:subtreeE)
+ case 2
+ from ancestors_Field[OF 2(2)]
+ and that show ?thesis by (unfold tRAG_alt_def, auto)
+ qed auto
+ have neq_th_a: "th_a \<noteq> th"
+ proof -
+ from vat_s'.readys_in_no_subtree[OF th_ready assms]
+ have "(Th th) \<notin> subtree (RAG s') (Th th')" .
+ with tRAG_subtree_RAG[of s' "Th th'"]
+ have "(Th th) \<notin> subtree (tRAG s') (Th th')" by auto
+ with a_in[unfolded eq_a] show ?thesis by auto
+ qed
+ from preced_kept[OF this]
+ show "(the_preced s \<circ> the_thread) a = (the_preced s' \<circ> the_thread) a"
+ by (unfold eq_a, simp)
+ qed
+ thus ?thesis by (unfold cp_alt_def1, simp)
+qed
+
+end
+
+end
+