--- a/Implementation.thy Wed Feb 03 12:04:03 2016 +0800
+++ b/Implementation.thy Wed Feb 03 21:05:15 2016 +0800
@@ -376,9 +376,6 @@
context valid_trace_p_w
begin
-interpretation vat_e: valid_trace "e#s"
- by (unfold_locales, insert vt_e, simp)
-
lemma cs_held: "(Cs cs, Th holder) \<in> RAG s"
using holding_s_holder
by (unfold s_RAG_def, fold holding_eq, auto)
@@ -428,13 +425,13 @@
and "y \<in> ancestors (tRAG (e#s)) u"
shows "cp_gen (e#s) y = cp_gen s y"
using assms(3)
-proof(induct rule:wf_induct[OF vat_e.fsbttRAGs.wf])
+proof(induct rule:wf_induct[OF vat_es.fsbttRAGs.wf])
case (1 x)
show ?case (is "?L = ?R")
proof -
from tRAG_ancestorsE[OF 1(2)]
obtain th2 where eq_x: "x = Th th2" by blast
- from vat_e.cp_gen_rec[OF this]
+ from vat_es.cp_gen_rec[OF this]
have "?L =
Max ({the_preced (e#s) th2} \<union> cp_gen (e#s) ` RTree.children (tRAG (e#s)) x)" .
also have "... =
@@ -454,15 +451,15 @@
assume "x \<in> Range {(Th th, Th holder)}"
hence eq_x: "x = Th holder" using RangeE by auto
show False
- proof(cases rule:vat_e.ancestors_headE[OF assms(1) start])
+ proof(cases rule:vat_es.ancestors_headE[OF assms(1) start])
case 1
- from x_u[folded this, unfolded eq_x] vat_e.acyclic_tRAG
+ from x_u[folded this, unfolded eq_x] vat_es.acyclic_tRAG
show ?thesis by (auto simp:ancestors_def acyclic_def)
next
case 2
with x_u[unfolded eq_x]
have "(Th holder, Th holder) \<in> (tRAG (e#s))^+" by (auto simp:ancestors_def)
- with vat_e.acyclic_tRAG show ?thesis by (auto simp:acyclic_def)
+ with vat_es.acyclic_tRAG show ?thesis by (auto simp:acyclic_def)
qed
qed
qed
@@ -473,7 +470,7 @@
assume a_in: "a \<in> ?A"
from 1(2)
show "?f a = ?g a"
- proof(cases rule:vat_e.rtree_s.ancestors_childrenE[case_names in_ch out_ch])
+ proof(cases rule:vat_es.rtree_s.ancestors_childrenE[case_names in_ch out_ch])
case in_ch
show ?thesis
proof(cases "a = u")
@@ -485,7 +482,7 @@
proof
assume a_in': "a \<in> ancestors (tRAG (e#s)) (Th th)"
have "a = u"
- proof(rule vat_e.rtree_s.ancestors_children_unique)
+ proof(rule vat_es.rtree_s.ancestors_children_unique)
from a_in' a_in show "a \<in> ancestors (tRAG (e#s)) (Th th) \<inter>
RTree.children (tRAG (e#s)) x" by auto
next
@@ -519,7 +516,7 @@
proof
assume a_in': "a \<in> ancestors (tRAG (e#s)) (Th th)"
have "a = z"
- proof(rule vat_e.rtree_s.ancestors_children_unique)
+ proof(rule vat_es.rtree_s.ancestors_children_unique)
from assms(1) h(1) have "z \<in> ancestors (tRAG (e#s)) (Th th)"
by (auto simp:ancestors_def)
with h(2) show " z \<in> ancestors (tRAG (e#s)) (Th th) \<inter>
@@ -570,9 +567,6 @@
context valid_trace_create
begin
-interpretation vat_e: valid_trace "e#s"
- by (unfold_locales, insert vt_e, simp)
-
lemma tRAG_kept: "tRAG (e#s) = tRAG s"
by (unfold tRAG_alt_def RAG_unchanged, auto)
@@ -632,7 +626,7 @@
qed
lemma eq_cp_th: "cp (e#s) th = preced th (e#s)"
- by (unfold vat_e.cp_rec children_of_th, simp add:the_preced_def)
+ by (unfold vat_es.cp_rec children_of_th, simp add:the_preced_def)
end
@@ -706,4 +700,3 @@
end
-