--- a/Implementation.thy Tue Jun 14 15:06:16 2016 +0100
+++ b/Implementation.thy Fri Jun 17 09:46:25 2016 +0100
@@ -154,7 +154,7 @@
proof -
from holding_th_cs_s
show ?thesis
- by (unfold s_RAG_def holding_eq, auto)
+ by (unfold s_RAG_def s_holding_abv, auto)
qed
lemma ancestors_cs:
@@ -187,7 +187,7 @@
lemma sub_RAGs':
"{(Cs cs, Th th), (Th taker, Cs cs)} \<subseteq> RAG s"
using waiting_taker holding_th_cs_s
- by (unfold s_RAG_def, fold waiting_eq holding_eq, auto)
+ by (unfold s_RAG_def, fold s_waiting_abv s_holding_abv, auto)
lemma ancestors_th':
"ancestors (RAG s) (Th taker) = {Th th, Cs cs}"
@@ -297,7 +297,7 @@
by (auto simp:ancestors_def)
from tranclD2[OF this]
obtain th' where "waiting s th' cs"
- by (auto simp:s_RAG_def waiting_eq)
+ by (auto simp:s_RAG_def s_waiting_abv)
with no_waiter_before
show ?thesis by simp
qed simp
@@ -390,7 +390,7 @@
lemma cs_held: "(Cs cs, Th holder) \<in> RAG s"
using holding_s_holder
- by (unfold s_RAG_def, fold holding_eq, auto)
+ by (unfold s_RAG_def, fold s_holding_abv, auto)
lemma tRAG_s:
"tRAG (e#s) = tRAG s \<union> {(Th th, Th holder)}"
@@ -662,7 +662,7 @@
assume "Th th \<in> Range (RAG s)"
then obtain cs where "holding s th cs"
by (simp add: holdents_RAG holdents_th_s)
- then show False by (unfold holding_eq, auto)
+ then show False by (unfold s_holding_abv, auto)
qed
moreover have "Th th \<notin> Domain (RAG s)"
proof