PIPDefs.thy
changeset 180 cfd17cb339d1
parent 179 f9e6c4166476
child 197 ca4ddf26a7c7
equal deleted inserted replaced
179:f9e6c4166476 180:cfd17cb339d1
   677 definition
   677 definition
   678   s_tG_abv: 
   678   s_tG_abv: 
   679   "tG (s::state) \<equiv> tG_raw (wq s)"
   679   "tG (s::state) \<equiv> tG_raw (wq s)"
   680 
   680 
   681 lemma tG_alt_def: 
   681 lemma tG_alt_def: 
   682   "tG s = {(th1, th2) | th1 th2. 
   682   "tG s = {(th\<^sub>1, th\<^sub>2) | th\<^sub>1 th\<^sub>2. 
   683                   \<exists> cs. (Th th1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th2) \<in> RAG s}" (is "?L = ?R")
   683                   \<exists> cs. (Th th\<^sub>1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th\<^sub>2) \<in> RAG s}" (is "?L = ?R")
   684   by (unfold s_tG_abv s_RAG_abv tG_raw_def, simp)
   684   by (unfold s_tG_abv s_RAG_abv tG_raw_def, simp)
   685 
   685 
   686 lemma tRAG_def_tG: "tRAG s = (map_prod Th Th) ` (tG s)" 
   686 lemma tRAG_def_tG: "tRAG s = (map_prod Th Th) ` (tG s)" 
   687   by (unfold tRAG_alt_def tG_alt_def, auto)
   687   by (unfold tRAG_alt_def tG_alt_def, auto)
   688 
   688