RTree.thy
changeset 197 ca4ddf26a7c7
parent 178 da27bece9575
equal deleted inserted replaced
196:704fd8749dad 197:ca4ddf26a7c7
  1494     hence "(y, x) \<in> r" by (auto simp:children_def)
  1494     hence "(y, x) \<in> r" by (auto simp:children_def)
  1495     from 1[rule_format, OF this, folded h(2)]
  1495     from 1[rule_format, OF this, folded h(2)]
  1496     show "finite M" .
  1496     show "finite M" .
  1497   qed
  1497   qed
  1498   thus ?case
  1498   thus ?case
  1499     by (unfold subtree_children finite_Un, auto)
  1499     apply(subst subtree_children finite_Un)
       
  1500     apply(auto)
       
  1501     done  
  1500 qed
  1502 qed
  1501 
  1503 
  1502 end
  1504 end
  1503 
  1505 
  1504 definition "pairself f = (\<lambda>(a, b). (f a, f b))"
  1506 definition "pairself f = (\<lambda>(a, b). (f a, f b))"