CpsG.thy
changeset 63 b620a2a0806a
parent 62 031d2ae9c9b8
equal deleted inserted replaced
62:031d2ae9c9b8 63:b620a2a0806a
    89   assumes "vt s'"
    89   assumes "vt s'"
    90   assumes "RAG s = RAG s' \<union> {(Th th, Cs cs)}"
    90   assumes "RAG s = RAG s' \<union> {(Th th, Cs cs)}"
    91   and "(Cs cs, Th th'') \<in> RAG s'"
    91   and "(Cs cs, Th th'') \<in> RAG s'"
    92   shows "tRAG s = tRAG s' \<union> {(Th th, Th th'')}" (is "?L = ?R")
    92   shows "tRAG s = tRAG s' \<union> {(Th th, Th th'')}" (is "?L = ?R")
    93 proof -
    93 proof -
       
    94   interpret vt_s': valid_trace "s'" using assms(1)
       
    95     by (unfold_locales, simp)
    94   interpret rtree: rtree "RAG s'"
    96   interpret rtree: rtree "RAG s'"
    95   proof
    97   proof
    96   show "single_valued (RAG s')"
    98   show "single_valued (RAG s')"
    97   apply (intro_locales)
    99   apply (intro_locales)
    98     by (unfold single_valued_def, 
   100     by (unfold single_valued_def, 
    99         auto intro:unique_RAG[OF assms(1)])
   101         auto intro:vt_s'.unique_RAG)
   100 
   102 
   101   show "acyclic (RAG s')"
   103   show "acyclic (RAG s')"
   102      by (rule acyclic_RAG[OF assms(1)])
   104      by (rule vt_s'.acyclic_RAG)
   103   qed
   105   qed
   104   { fix n1 n2
   106   { fix n1 n2
   105     assume "(n1, n2) \<in> ?L"
   107     assume "(n1, n2) \<in> ?L"
   106     from this[unfolded tRAG_alt_def]
   108     from this[unfolded tRAG_alt_def]
   107     obtain th1 th2 cs' where 
   109     obtain th1 th2 cs' where 
   150         by (unfold eq_n tRAG_alt_def, auto)
   152         by (unfold eq_n tRAG_alt_def, auto)
   151     qed
   153     qed
   152   } ultimately show ?thesis by auto
   154   } ultimately show ?thesis by auto
   153 qed
   155 qed
   154 
   156 
       
   157 context valid_trace
       
   158 begin
       
   159 
       
   160 lemmas RAG_tRAG_transfer = RAG_tRAG_transfer[OF vt]
       
   161 
       
   162 end
       
   163 
   155 lemma cp_alt_def:
   164 lemma cp_alt_def:
   156   "cp s th =  
   165   "cp s th =  
   157            Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})"
   166            Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})"
   158 proof -
   167 proof -
   159   have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) =
   168   have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) =
   219     have "(a, x) \<in> (RAG s)^*" by auto
   228     have "(a, x) \<in> (RAG s)^*" by auto
   220     hence "a \<in> subtree (RAG s) x" by (auto simp:subtree_def)
   229     hence "a \<in> subtree (RAG s) x" by (auto simp:subtree_def)
   221   } thus ?thesis by auto
   230   } thus ?thesis by auto
   222 qed
   231 qed
   223 
   232 
       
   233 lemma tRAG_trancl_eq:
       
   234    "{th'. (Th th', Th th)  \<in> (tRAG s)^+} = 
       
   235     {th'. (Th th', Th th)  \<in> (RAG s)^+}"
       
   236    (is "?L = ?R")
       
   237 proof -
       
   238   { fix th'
       
   239     assume "th' \<in> ?L"
       
   240     hence "(Th th', Th th) \<in> (tRAG s)^+" by auto
       
   241     from tranclD[OF this]
       
   242     obtain z where h: "(Th th', z) \<in> tRAG s" "(z, Th th) \<in> (tRAG s)\<^sup>*" by auto
       
   243     from tRAG_subtree_RAG[of s] and this(2)
       
   244     have "(z, Th th) \<in> (RAG s)^*" by (meson subsetCE tRAG_star_RAG) 
       
   245     moreover from h(1) have "(Th th', z) \<in> (RAG s)^+" using tRAG_alt_def by auto 
       
   246     ultimately have "th' \<in> ?R"  by auto 
       
   247   } moreover 
       
   248   { fix th'
       
   249     assume "th' \<in> ?R"
       
   250     hence "(Th th', Th th) \<in> (RAG s)^+" by (auto)
       
   251     from plus_rpath[OF this]
       
   252     obtain xs where rp: "rpath (RAG s) (Th th') xs (Th th)" "xs \<noteq> []" by auto
       
   253     hence "(Th th', Th th) \<in> (tRAG s)^+"
       
   254     proof(induct xs arbitrary:th' th rule:length_induct)
       
   255       case (1 xs th' th)
       
   256       then obtain x1 xs1 where Cons1: "xs = x1#xs1" by (cases xs, auto)
       
   257       show ?case
       
   258       proof(cases "xs1")
       
   259         case Nil
       
   260         from 1(2)[unfolded Cons1 Nil]
       
   261         have rp: "rpath (RAG s) (Th th') [x1] (Th th)" .
       
   262         hence "(Th th', x1) \<in> (RAG s)" by (cases, simp)
       
   263         then obtain cs where "x1 = Cs cs" 
       
   264               by (unfold s_RAG_def, auto)
       
   265         from rpath_nnl_lastE[OF rp[unfolded this]]
       
   266         show ?thesis by auto
       
   267       next
       
   268         case (Cons x2 xs2)
       
   269         from 1(2)[unfolded Cons1[unfolded this]]
       
   270         have rp: "rpath (RAG s) (Th th') (x1 # x2 # xs2) (Th th)" .
       
   271         from rpath_edges_on[OF this]
       
   272         have eds: "edges_on (Th th' # x1 # x2 # xs2) \<subseteq> RAG s" .
       
   273         have "(Th th', x1) \<in> edges_on (Th th' # x1 # x2 # xs2)"
       
   274             by (simp add: edges_on_unfold)
       
   275         with eds have rg1: "(Th th', x1) \<in> RAG s" by auto
       
   276         then obtain cs1 where eq_x1: "x1 = Cs cs1" by (unfold s_RAG_def, auto)
       
   277         have "(x1, x2) \<in> edges_on (Th th' # x1 # x2 # xs2)"
       
   278             by (simp add: edges_on_unfold)
       
   279         from this eds
       
   280         have rg2: "(x1, x2) \<in> RAG s" by auto
       
   281         from this[unfolded eq_x1] 
       
   282         obtain th1 where eq_x2: "x2 = Th th1" by (unfold s_RAG_def, auto)
       
   283         from rg1[unfolded eq_x1] rg2[unfolded eq_x1 eq_x2]
       
   284         have rt1: "(Th th', Th th1) \<in> tRAG s" by (unfold tRAG_alt_def, auto)
       
   285         from rp have "rpath (RAG s) x2 xs2 (Th th)"
       
   286            by  (elim rpath_ConsE, simp)
       
   287         from this[unfolded eq_x2] have rp': "rpath (RAG s) (Th th1) xs2 (Th th)" .
       
   288         show ?thesis
       
   289         proof(cases "xs2 = []")
       
   290           case True
       
   291           from rpath_nilE[OF rp'[unfolded this]]
       
   292           have "th1 = th" by auto
       
   293           from rt1[unfolded this] show ?thesis by auto
       
   294         next
       
   295           case False
       
   296           from 1(1)[rule_format, OF _ rp' this, unfolded Cons1 Cons]
       
   297           have "(Th th1, Th th) \<in> (tRAG s)\<^sup>+" by simp
       
   298           with rt1 show ?thesis by auto
       
   299         qed
       
   300       qed
       
   301     qed
       
   302     hence "th' \<in> ?L" by auto
       
   303   } ultimately show ?thesis by blast
       
   304 qed
       
   305 
       
   306 lemma tRAG_trancl_eq_Th:
       
   307    "{Th th' | th'. (Th th', Th th)  \<in> (tRAG s)^+} = 
       
   308     {Th th' | th'. (Th th', Th th)  \<in> (RAG s)^+}"
       
   309     using tRAG_trancl_eq by auto
       
   310 
       
   311 lemma dependants_alt_def:
       
   312   "dependants s th = {th'. (Th th', Th th) \<in> (tRAG s)^+}"
       
   313   by (metis eq_RAG s_dependants_def tRAG_trancl_eq)
       
   314   
       
   315 context valid_trace
       
   316 begin
       
   317 
       
   318 lemma count_eq_tRAG_plus:
       
   319   assumes "cntP s th = cntV s th"
       
   320   shows "{th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
       
   321   using assms count_eq_dependants dependants_alt_def eq_dependants by auto 
       
   322 
       
   323 lemma count_eq_RAG_plus:
       
   324   assumes "cntP s th = cntV s th"
       
   325   shows "{th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
       
   326   using assms count_eq_dependants cs_dependants_def eq_RAG by auto
       
   327 
       
   328 lemma count_eq_RAG_plus_Th:
       
   329   assumes "cntP s th = cntV s th"
       
   330   shows "{Th th' | th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
       
   331   using count_eq_RAG_plus[OF assms] by auto
       
   332 
       
   333 lemma count_eq_tRAG_plus_Th:
       
   334   assumes "cntP s th = cntV s th"
       
   335   shows "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
       
   336    using count_eq_tRAG_plus[OF assms] by auto
       
   337 
       
   338 end
       
   339 
   224 lemma tRAG_subtree_eq: 
   340 lemma tRAG_subtree_eq: 
   225    "(subtree (tRAG s) (Th th)) = {Th th' | th'. Th th'  \<in> (subtree (RAG s) (Th th))}"
   341    "(subtree (tRAG s) (Th th)) = {Th th' | th'. Th th'  \<in> (subtree (RAG s) (Th th))}"
   226    (is "?L = ?R")
   342    (is "?L = ?R")
   227 proof -
   343 proof -
   228   { fix n
   344   { fix n 
   229     assume "n \<in> ?L"
   345     assume h: "n \<in> ?L"
   230     with subtree_nodeE[OF this]
   346     hence "n \<in> ?R"
   231     obtain th' where "n = Th th'" "Th th' \<in>  subtree (tRAG s) (Th th)" by auto
   347     by (smt mem_Collect_eq subsetCE subtree_def subtree_nodeE tRAG_subtree_RAG) 
   232     with tRAG_subtree_RAG[of s "Th th"]
       
   233     have "n \<in> ?R" by auto
       
   234   } moreover {
   348   } moreover {
   235     fix n
   349     fix n
   236     assume "n \<in> ?R"
   350     assume "n \<in> ?R"
   237     then obtain th' where h: "n = Th th'" "(Th th', Th th) \<in> (RAG s)^*" 
   351     then obtain th' where h: "n = Th th'" "(Th th', Th th) \<in> (RAG s)^*"
   238       by (auto simp:subtree_def)
   352       by (auto simp:subtree_def)
   239     from star_rpath[OF this(2)]
   353     from rtranclD[OF this(2)]
   240     obtain xs where "rpath (RAG s) (Th th') xs (Th th)" by auto
   354     have "n \<in> ?L"
   241     hence "Th th' \<in> subtree (tRAG s) (Th th)"
   355     proof
   242     proof(induct xs arbitrary:th' th rule:length_induct)
   356       assume "Th th' \<noteq> Th th \<and> (Th th', Th th) \<in> (RAG s)\<^sup>+"
   243       case (1 xs th' th)
   357       with h have "n \<in> {Th th' | th'. (Th th', Th th)  \<in> (RAG s)^+}" by auto
   244       show ?case
   358       thus ?thesis using subtree_def tRAG_trancl_eq by fastforce
   245       proof(cases xs)
   359     qed (insert h, auto simp:subtree_def)
   246         case Nil
       
   247           from rpath_nilE[OF 1(2)[unfolded this]]
       
   248           have "th' = th" by auto
       
   249           thus ?thesis by (auto simp:subtree_def)
       
   250       next
       
   251         case (Cons x1 xs1) note Cons1 = Cons
       
   252         show ?thesis
       
   253         proof(cases "xs1")
       
   254           case Nil
       
   255             from 1(2)[unfolded Cons[unfolded this]]
       
   256             have rp: "rpath (RAG s) (Th th') [x1] (Th th)" .
       
   257             hence "(Th th', x1) \<in> (RAG s)" by (cases, simp)
       
   258             then obtain cs where "x1 = Cs cs" 
       
   259               by (unfold s_RAG_def, auto)
       
   260             from rpath_nnl_lastE[OF rp[unfolded this]]
       
   261             show ?thesis by auto
       
   262         next
       
   263           case (Cons x2 xs2)
       
   264           from 1(2)[unfolded Cons1[unfolded this]]
       
   265           have rp: "rpath (RAG s) (Th th') (x1 # x2 # xs2) (Th th)" .
       
   266           from rpath_edges_on[OF this]
       
   267           have eds: "edges_on (Th th' # x1 # x2 # xs2) \<subseteq> RAG s" .
       
   268           have "(Th th', x1) \<in> edges_on (Th th' # x1 # x2 # xs2)"
       
   269             by (simp add: edges_on_unfold)
       
   270           with eds have rg1: "(Th th', x1) \<in> RAG s" by auto
       
   271           then obtain cs1 where eq_x1: "x1 = Cs cs1" by (unfold s_RAG_def, auto)
       
   272           have "(x1, x2) \<in> edges_on (Th th' # x1 # x2 # xs2)"
       
   273             by (simp add: edges_on_unfold)
       
   274           from this eds
       
   275           have rg2: "(x1, x2) \<in> RAG s" by auto
       
   276           from this[unfolded eq_x1] 
       
   277           obtain th1 where eq_x2: "x2 = Th th1" by (unfold s_RAG_def, auto)
       
   278           from rp have "rpath (RAG s) x2 xs2 (Th th)"
       
   279            by  (elim rpath_ConsE, simp)
       
   280           from this[unfolded eq_x2] have rp': "rpath (RAG s) (Th th1) xs2 (Th th)" .
       
   281           from 1(1)[rule_format, OF _ this, unfolded Cons1 Cons]
       
   282           have "Th th1 \<in> subtree (tRAG s) (Th th)" by simp
       
   283           moreover have "(Th th', Th th1) \<in> (tRAG s)^*"
       
   284           proof -
       
   285             from rg1[unfolded eq_x1] rg2[unfolded eq_x1 eq_x2]
       
   286             show ?thesis by (unfold RAG_split tRAG_def wRAG_def hRAG_def, auto)
       
   287           qed
       
   288           ultimately show ?thesis by (auto simp:subtree_def)
       
   289         qed
       
   290       qed
       
   291     qed
       
   292     from this[folded h(1)]
       
   293     have "n \<in> ?L" .
       
   294   } ultimately show ?thesis by auto
   360   } ultimately show ?thesis by auto
   295 qed
   361 qed
   296 
   362 
   297 lemma threads_set_eq: 
   363 lemma threads_set_eq: 
   298    "the_thread ` (subtree (tRAG s) (Th th)) = 
   364    "the_thread ` (subtree (tRAG s) (Th th)) = 
   323   obtain th where eq_a: "a = Th th" by auto
   389   obtain th where eq_a: "a = Th th" by auto
   324   show "cp_gen s a = (cp s \<circ> the_thread) a"
   390   show "cp_gen s a = (cp s \<circ> the_thread) a"
   325     by  (unfold eq_a, simp, unfold cp_gen_def_cond[OF refl[of "Th th"]], simp)
   391     by  (unfold eq_a, simp, unfold cp_gen_def_cond[OF refl[of "Th th"]], simp)
   326 qed
   392 qed
   327 
   393 
   328 locale valid_trace = 
       
   329   fixes s
       
   330   assumes vt : "vt s"
       
   331 
   394 
   332 context valid_trace
   395 context valid_trace
   333 begin
   396 begin
       
   397 
       
   398 lemma RAG_threads:
       
   399   assumes "(Th th) \<in> Field (RAG s)"
       
   400   shows "th \<in> threads s"
       
   401   using assms
       
   402   by (metis Field_def UnE dm_RAG_threads range_in vt)
       
   403 
       
   404 lemma subtree_tRAG_thread:
       
   405   assumes "th \<in> threads s"
       
   406   shows "subtree (tRAG s) (Th th) \<subseteq> Th ` threads s" (is "?L \<subseteq> ?R")
       
   407 proof -
       
   408   have "?L = {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
       
   409     by (unfold tRAG_subtree_eq, simp)
       
   410   also have "... \<subseteq> ?R"
       
   411   proof
       
   412     fix x
       
   413     assume "x \<in> {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
       
   414     then obtain th' where h: "x = Th th'" "Th th' \<in> subtree (RAG s) (Th th)" by auto
       
   415     from this(2)
       
   416     show "x \<in> ?R"
       
   417     proof(cases rule:subtreeE)
       
   418       case 1
       
   419       thus ?thesis by (simp add: assms h(1)) 
       
   420     next
       
   421       case 2
       
   422       thus ?thesis by (metis ancestors_Field dm_RAG_threads h(1) image_eqI) 
       
   423     qed
       
   424   qed
       
   425   finally show ?thesis .
       
   426 qed
   334 
   427 
   335 lemma readys_root:
   428 lemma readys_root:
   336   assumes "th \<in> readys s"
   429   assumes "th \<in> readys s"
   337   shows "root (RAG s) (Th th)"
   430   shows "root (RAG s) (Th th)"
   338 proof -
   431 proof -
   367 lemma not_in_thread_isolated:
   460 lemma not_in_thread_isolated:
   368   assumes "th \<notin> threads s"
   461   assumes "th \<notin> threads s"
   369   shows "(Th th) \<notin> Field (RAG s)"
   462   shows "(Th th) \<notin> Field (RAG s)"
   370 proof
   463 proof
   371   assume "(Th th) \<in> Field (RAG s)"
   464   assume "(Th th) \<in> Field (RAG s)"
   372   with dm_RAG_threads[OF vt] and range_in[OF vt] assms
   465   with dm_RAG_threads and range_in assms
   373   show False by (unfold Field_def, blast)
   466   show False by (unfold Field_def, blast)
   374 qed
   467 qed
   375 
   468 
   376 lemma wf_RAG: "wf (RAG s)"
   469 lemma wf_RAG: "wf (RAG s)"
   377 proof(rule finite_acyclic_wf)
   470 proof(rule finite_acyclic_wf)
   378   from finite_RAG[OF vt] show "finite (RAG s)" .
   471   from finite_RAG show "finite (RAG s)" .
   379 next
   472 next
   380   from acyclic_RAG[OF vt] show "acyclic (RAG s)" .
   473   from acyclic_RAG show "acyclic (RAG s)" .
   381 qed
   474 qed
   382 
   475 
   383 lemma sgv_wRAG: "single_valued (wRAG s)"
   476 lemma sgv_wRAG: "single_valued (wRAG s)"
   384   using waiting_unique[OF vt] 
   477   using waiting_unique
   385   by (unfold single_valued_def wRAG_def, auto)
   478   by (unfold single_valued_def wRAG_def, auto)
   386 
   479 
   387 lemma sgv_hRAG: "single_valued (hRAG s)"
   480 lemma sgv_hRAG: "single_valued (hRAG s)"
   388   using holding_unique 
   481   using holding_unique 
   389   by (unfold single_valued_def hRAG_def, auto)
   482   by (unfold single_valued_def hRAG_def, auto)
   392   by (unfold tRAG_def, rule single_valued_relcomp, 
   485   by (unfold tRAG_def, rule single_valued_relcomp, 
   393               insert sgv_wRAG sgv_hRAG, auto)
   486               insert sgv_wRAG sgv_hRAG, auto)
   394 
   487 
   395 lemma acyclic_tRAG: "acyclic (tRAG s)"
   488 lemma acyclic_tRAG: "acyclic (tRAG s)"
   396 proof(unfold tRAG_def, rule acyclic_compose)
   489 proof(unfold tRAG_def, rule acyclic_compose)
   397   show "acyclic (RAG s)" using acyclic_RAG[OF vt] .
   490   show "acyclic (RAG s)" using acyclic_RAG .
   398 next
   491 next
   399   show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto
   492   show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto
   400 next
   493 next
   401   show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto
   494   show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto
   402 qed
   495 qed
   403 
   496 
   404 lemma sgv_RAG: "single_valued (RAG s)"
   497 lemma sgv_RAG: "single_valued (RAG s)"
   405   using unique_RAG[OF vt] by (auto simp:single_valued_def)
   498   using unique_RAG by (auto simp:single_valued_def)
   406 
   499 
   407 lemma rtree_RAG: "rtree (RAG s)"
   500 lemma rtree_RAG: "rtree (RAG s)"
   408   using sgv_RAG acyclic_RAG[OF vt]
   501   using sgv_RAG acyclic_RAG
   409   by (unfold rtree_def rtree_axioms_def sgv_def, auto)
   502   by (unfold rtree_def rtree_axioms_def sgv_def, auto)
       
   503 
   410 end
   504 end
   411 
   505 
   412 
   506 
   413 sublocale valid_trace < rtree_RAG: rtree "RAG s"
   507 sublocale valid_trace < rtree_RAG: rtree "RAG s"
   414 proof
   508 proof
   415   show "single_valued (RAG s)"
   509   show "single_valued (RAG s)"
   416   apply (intro_locales)
   510   apply (intro_locales)
   417     by (unfold single_valued_def, 
   511     by (unfold single_valued_def, 
   418         auto intro:unique_RAG[OF vt])
   512         auto intro:unique_RAG)
   419 
   513 
   420   show "acyclic (RAG s)"
   514   show "acyclic (RAG s)"
   421      by (rule acyclic_RAG[OF vt])
   515      by (rule acyclic_RAG)
   422 qed
   516 qed
   423 
   517 
   424 sublocale valid_trace < rtree_s: rtree "tRAG s"
   518 sublocale valid_trace < rtree_s: rtree "tRAG s"
   425 proof(unfold_locales)
   519 proof(unfold_locales)
   426   from sgv_tRAG show "single_valued (tRAG s)" .
   520   from sgv_tRAG show "single_valued (tRAG s)" .
   430 
   524 
   431 sublocale valid_trace < fsbtRAGs : fsubtree "RAG s"
   525 sublocale valid_trace < fsbtRAGs : fsubtree "RAG s"
   432 proof -
   526 proof -
   433   show "fsubtree (RAG s)"
   527   show "fsubtree (RAG s)"
   434   proof(intro_locales)
   528   proof(intro_locales)
   435     show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG[OF vt]] .
   529     show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] .
   436   next
   530   next
   437     show "fsubtree_axioms (RAG s)"
   531     show "fsubtree_axioms (RAG s)"
   438     proof(unfold fsubtree_axioms_def)
   532     proof(unfold fsubtree_axioms_def)
   439     find_theorems wf RAG
   533     find_theorems wf RAG
   440       from wf_RAG show "wf (RAG s)" .
   534       from wf_RAG show "wf (RAG s)" .
   448   proof -
   542   proof -
   449     have "fbranch (tRAG s)"
   543     have "fbranch (tRAG s)"
   450     proof(unfold tRAG_def, rule fbranch_compose)
   544     proof(unfold tRAG_def, rule fbranch_compose)
   451         show "fbranch (wRAG s)"
   545         show "fbranch (wRAG s)"
   452         proof(rule finite_fbranchI)
   546         proof(rule finite_fbranchI)
   453            from finite_RAG[OF vt] show "finite (wRAG s)"
   547            from finite_RAG show "finite (wRAG s)"
   454            by (unfold RAG_split, auto)
   548            by (unfold RAG_split, auto)
   455         qed
   549         qed
   456     next
   550     next
   457         show "fbranch (hRAG s)"
   551         show "fbranch (hRAG s)"
   458         proof(rule finite_fbranchI)
   552         proof(rule finite_fbranchI)
   459            from finite_RAG[OF vt] 
   553            from finite_RAG 
   460            show "finite (hRAG s)" by (unfold RAG_split, auto)
   554            show "finite (hRAG s)" by (unfold RAG_split, auto)
   461         qed
   555         qed
   462     qed
   556     qed
   463     moreover have "wf (tRAG s)"
   557     moreover have "wf (tRAG s)"
   464     proof(rule wf_subset)
   558     proof(rule wf_subset)
   594                        "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
   688                        "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
   595   thus ?thesis
   689   thus ?thesis
   596     by (unfold cs_holding_def, auto)
   690     by (unfold cs_holding_def, auto)
   597 qed
   691 qed
   598 
   692 
       
   693 context valid_trace
       
   694 begin
       
   695 
   599 lemma next_th_waiting:
   696 lemma next_th_waiting:
   600   assumes vt: "vt s"
   697   assumes nxt: "next_th s th cs th'"
   601   and nxt: "next_th s th cs th'"
       
   602   shows "waiting (wq s) th' cs"
   698   shows "waiting (wq s) th' cs"
   603 proof -
   699 proof -
   604   from nxt[unfolded next_th_def]
   700   from nxt[unfolded next_th_def]
   605   obtain rest where h: "wq s cs = th # rest"
   701   obtain rest where h: "wq s cs = th # rest"
   606                        "rest \<noteq> []" 
   702                        "rest \<noteq> []" 
   607                        "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
   703                        "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
   608   from wq_distinct[OF vt, of cs, unfolded h]
   704   from wq_distinct[of cs, unfolded h]
   609   have dst: "distinct (th # rest)" .
   705   have dst: "distinct (th # rest)" .
   610   have in_rest: "th' \<in> set rest"
   706   have in_rest: "th' \<in> set rest"
   611   proof(unfold h, rule someI2)
   707   proof(unfold h, rule someI2)
   612     show "distinct rest \<and> set rest = set rest" using dst by auto
   708     show "distinct rest \<and> set rest = set rest" using dst by auto
   613   next
   709   next
   620     by (unfold h(1), insert in_rest dst, auto)
   716     by (unfold h(1), insert in_rest dst, auto)
   621   ultimately show ?thesis by (auto simp:cs_waiting_def)
   717   ultimately show ?thesis by (auto simp:cs_waiting_def)
   622 qed
   718 qed
   623 
   719 
   624 lemma next_th_RAG:
   720 lemma next_th_RAG:
   625   assumes vt: "vt s"
   721   assumes nxt: "next_th (s::event list) th cs th'"
   626   and nxt: "next_th s th cs th'"
       
   627   shows "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s"
   722   shows "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s"
   628   using assms next_th_holding next_th_waiting
   723   using vt assms next_th_holding next_th_waiting
   629 by (unfold s_RAG_def, simp)
   724   by (unfold s_RAG_def, simp)
       
   725 
       
   726 end
   630 
   727 
   631 -- {* A useless definition *}
   728 -- {* A useless definition *}
   632 definition cps:: "state \<Rightarrow> (thread \<times> precedence) set"
   729 definition cps:: "state \<Rightarrow> (thread \<times> precedence) set"
   633 where "cps s = {(th, cp s th) | th . th \<in> threads s}"
   730 where "cps s = {(th, cp s th) | th . th \<in> threads s}"
   634 
   731 
   907             |
  1004             |
   908     th7 ----|
  1005     th7 ----|
   909 *)
  1006 *)
   910 
  1007 
   911 lemma sub_RAGs': "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s'"
  1008 lemma sub_RAGs': "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s'"
   912                 using next_th_RAG[OF vat_s'.vt nt]  .
  1009                 using next_th_RAG[OF nt]  .
   913 
  1010 
   914 lemma ancestors_th': 
  1011 lemma ancestors_th': 
   915   "ancestors (RAG s') (Th th') = {Th th, Cs cs}" 
  1012   "ancestors (RAG s') (Th th') = {Th th, Cs cs}" 
   916 proof -
  1013 proof -
   917   have "ancestors (RAG s') (Th th') = ancestors (RAG s') (Cs cs) \<union> {Cs cs}"
  1014   have "ancestors (RAG s') (Th th') = ancestors (RAG s') (Cs cs) \<union> {Cs cs}"
  1173   thus ?thesis by (unfold RAG_split, auto)
  1270   thus ?thesis by (unfold RAG_split, auto)
  1174 qed
  1271 qed
  1175 
  1272 
  1176 lemma tRAG_s: 
  1273 lemma tRAG_s: 
  1177   "tRAG s = tRAG s' \<union> {(Th th, Th th')}"
  1274   "tRAG s = tRAG s' \<union> {(Th th, Th th')}"
  1178   using RAG_tRAG_transfer[OF step_back_vt[OF vt_s[unfolded s_def]] RAG_s cs_held] .
  1275   using RAG_tRAG_transfer[OF RAG_s cs_held] .
  1179 
  1276 
  1180 lemma cp_kept:
  1277 lemma cp_kept:
  1181   assumes "Th th'' \<notin> ancestors (tRAG s) (Th th)"
  1278   assumes "Th th'' \<notin> ancestors (tRAG s) (Th th)"
  1182   shows "cp s th'' = cp s' th''"
  1279   shows "cp s th'' = cp s' th''"
  1183 proof -
  1280 proof -