RTree.thy
changeset 64 b4bcd1edbb6d
parent 63 b620a2a0806a
child 80 17305a85493d
equal deleted inserted replaced
63:b620a2a0806a 64:b4bcd1edbb6d
   152 subsection {* Auxiliary lemmas *}
   152 subsection {* Auxiliary lemmas *}
   153 
   153 
   154 lemma index_minimize:
   154 lemma index_minimize:
   155   assumes "P (i::nat)"
   155   assumes "P (i::nat)"
   156   obtains j where "P j" and "\<forall> k < j. \<not> P k" 
   156   obtains j where "P j" and "\<forall> k < j. \<not> P k" 
       
   157 using assms
   157 proof -
   158 proof -
   158   have "\<exists> j. P j \<and> (\<forall> k < j. \<not> P k)"
   159   have "\<exists> j. P j \<and> (\<forall> k < j. \<not> P k)"
   159   using assms
   160   using assms
   160   proof(induct i rule:less_induct)
   161   proof(induct i rule:less_induct)
   161     case (less t)
   162     case (less t)