538 from preced_unique [OF _ th_in1 th_in2] and neq_12 |
860 from preced_unique [OF _ th_in1 th_in2] and neq_12 |
539 have "preced th1 s \<noteq> preced th2 s" by auto |
861 have "preced th1 s \<noteq> preced th2 s" by auto |
540 thus ?thesis by auto |
862 thus ?thesis by auto |
541 qed |
863 qed |
542 |
864 |
543 (* An aux lemma used later *) |
|
544 lemma unique_minus: |
|
545 assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c" |
|
546 and xy: "(x, y) \<in> r" |
|
547 and xz: "(x, z) \<in> r^+" |
|
548 and neq: "y \<noteq> z" |
|
549 shows "(y, z) \<in> r^+" |
|
550 proof - |
|
551 from xz and neq show ?thesis |
|
552 proof(induct) |
|
553 case (base ya) |
|
554 have "(x, ya) \<in> r" by fact |
|
555 from unique [OF xy this] have "y = ya" . |
|
556 with base show ?case by auto |
|
557 next |
|
558 case (step ya z) |
|
559 show ?case |
|
560 proof(cases "y = ya") |
|
561 case True |
|
562 from step True show ?thesis by simp |
|
563 next |
|
564 case False |
|
565 from step False |
|
566 show ?thesis by auto |
|
567 qed |
|
568 qed |
|
569 qed |
|
570 |
|
571 lemma unique_base: |
|
572 assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c" |
|
573 and xy: "(x, y) \<in> r" |
|
574 and xz: "(x, z) \<in> r^+" |
|
575 and neq_yz: "y \<noteq> z" |
|
576 shows "(y, z) \<in> r^+" |
|
577 proof - |
|
578 from xz neq_yz show ?thesis |
|
579 proof(induct) |
|
580 case (base ya) |
|
581 from xy unique base show ?case by auto |
|
582 next |
|
583 case (step ya z) |
|
584 show ?case |
|
585 proof(cases "y = ya") |
|
586 case True |
|
587 from True step show ?thesis by auto |
|
588 next |
|
589 case False |
|
590 from False step |
|
591 have "(y, ya) \<in> r\<^sup>+" by auto |
|
592 with step show ?thesis by auto |
|
593 qed |
|
594 qed |
|
595 qed |
|
596 |
|
597 lemma unique_chain: |
|
598 assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c" |
|
599 and xy: "(x, y) \<in> r^+" |
|
600 and xz: "(x, z) \<in> r^+" |
|
601 and neq_yz: "y \<noteq> z" |
|
602 shows "(y, z) \<in> r^+ \<or> (z, y) \<in> r^+" |
|
603 proof - |
|
604 from xy xz neq_yz show ?thesis |
|
605 proof(induct) |
|
606 case (base y) |
|
607 have h1: "(x, y) \<in> r" and h2: "(x, z) \<in> r\<^sup>+" and h3: "y \<noteq> z" using base by auto |
|
608 from unique_base [OF _ h1 h2 h3] and unique show ?case by auto |
|
609 next |
|
610 case (step y za) |
|
611 show ?case |
|
612 proof(cases "y = z") |
|
613 case True |
|
614 from True step show ?thesis by auto |
|
615 next |
|
616 case False |
|
617 from False step have "(y, z) \<in> r\<^sup>+ \<or> (z, y) \<in> r\<^sup>+" by auto |
|
618 thus ?thesis |
|
619 proof |
|
620 assume "(z, y) \<in> r\<^sup>+" |
|
621 with step have "(z, za) \<in> r\<^sup>+" by auto |
|
622 thus ?thesis by auto |
|
623 next |
|
624 assume h: "(y, z) \<in> r\<^sup>+" |
|
625 from step have yza: "(y, za) \<in> r" by simp |
|
626 from step have "za \<noteq> z" by simp |
|
627 from unique_minus [OF _ yza h this] and unique |
|
628 have "(za, z) \<in> r\<^sup>+" by auto |
|
629 thus ?thesis by auto |
|
630 qed |
|
631 qed |
|
632 qed |
|
633 qed |
|
634 |
|
635 text {* |
865 text {* |
636 The following three lemmas show that @{text "RAG"} does not change |
866 The following three lemmas show that @{text "RAG"} does not change |
637 by the happening of @{text "Set"}, @{text "Create"} and @{text "Exit"} |
867 by the happening of @{text "Set"}, @{text "Create"} and @{text "Exit"} |
638 events, respectively. |
868 events, respectively. |
639 *} |
869 *} |
640 |
870 |
641 lemma RAG_set_unchanged: "(RAG (Set th prio # s)) = RAG s" |
871 lemma RAG_set_unchanged: "(RAG (Set th prio # s)) = RAG s" |
642 apply (unfold s_RAG_def s_waiting_def wq_def) |
872 apply (unfold s_RAG_def s_waiting_def wq_def) |
643 by (simp add:Let_def) |
873 by (simp add:Let_def) |
644 |
874 |
|
875 lemma (in valid_trace_set) |
|
876 RAG_unchanged: "(RAG (e # s)) = RAG s" |
|
877 by (unfold is_set RAG_set_unchanged, simp) |
|
878 |
645 lemma RAG_create_unchanged: "(RAG (Create th prio # s)) = RAG s" |
879 lemma RAG_create_unchanged: "(RAG (Create th prio # s)) = RAG s" |
646 apply (unfold s_RAG_def s_waiting_def wq_def) |
880 apply (unfold s_RAG_def s_waiting_def wq_def) |
647 by (simp add:Let_def) |
881 by (simp add:Let_def) |
648 |
882 |
|
883 lemma (in valid_trace_create) |
|
884 RAG_unchanged: "(RAG (e # s)) = RAG s" |
|
885 by (unfold is_create RAG_create_unchanged, simp) |
|
886 |
649 lemma RAG_exit_unchanged: "(RAG (Exit th # s)) = RAG s" |
887 lemma RAG_exit_unchanged: "(RAG (Exit th # s)) = RAG s" |
650 apply (unfold s_RAG_def s_waiting_def wq_def) |
888 apply (unfold s_RAG_def s_waiting_def wq_def) |
651 by (simp add:Let_def) |
889 by (simp add:Let_def) |
652 |
890 |
653 |
891 lemma (in valid_trace_exit) |
654 text {* |
892 RAG_unchanged: "(RAG (e # s)) = RAG s" |
655 The following lemmas are used in the proof of |
893 by (unfold is_exit RAG_exit_unchanged, simp) |
656 lemma @{text "step_RAG_v"}, which characterizes how the @{text "RAG"} is changed |
894 |
657 by @{text "V"}-events. |
895 context valid_trace_v |
658 However, since our model is very concise, such seemingly obvious lemmas need to be derived from scratch, |
896 begin |
659 starting from the model definitions. |
897 |
660 *} |
898 lemma distinct_rest: "distinct rest" |
661 lemma step_v_hold_inv[elim_format]: |
899 by (simp add: distinct_tl rest_def wq_distinct) |
662 "\<And>c t. \<lbrakk>vt (V th cs # s); |
900 |
663 \<not> holding (wq s) t c; holding (wq (V th cs # s)) t c\<rbrakk> \<Longrightarrow> |
901 lemma holding_cs_eq_th: |
664 next_th s th cs t \<and> c = cs" |
902 assumes "holding s t cs" |
665 proof - |
903 shows "t = th" |
666 fix c t |
904 proof - |
667 assume vt: "vt (V th cs # s)" |
905 from pip_e[unfolded is_v] |
668 and nhd: "\<not> holding (wq s) t c" |
906 show ?thesis |
669 and hd: "holding (wq (V th cs # s)) t c" |
907 proof(cases) |
670 show "next_th s th cs t \<and> c = cs" |
908 case (thread_V) |
|
909 from held_unique[OF this(2) assms] |
|
910 show ?thesis by simp |
|
911 qed |
|
912 qed |
|
913 |
|
914 lemma distinct_wq': "distinct wq'" |
|
915 by (metis (mono_tags, lifting) distinct_rest some_eq_ex wq'_def) |
|
916 |
|
917 lemma set_wq': "set wq' = set rest" |
|
918 by (metis (mono_tags, lifting) distinct_rest rest_def |
|
919 some_eq_ex wq'_def) |
|
920 |
|
921 lemma th'_in_inv: |
|
922 assumes "th' \<in> set wq'" |
|
923 shows "th' \<in> set rest" |
|
924 using assms set_wq' by simp |
|
925 |
|
926 lemma neq_t_th: |
|
927 assumes "waiting (e#s) t c" |
|
928 shows "t \<noteq> th" |
|
929 proof |
|
930 assume otherwise: "t = th" |
|
931 show False |
671 proof(cases "c = cs") |
932 proof(cases "c = cs") |
|
933 case True |
|
934 have "t \<in> set wq'" |
|
935 using assms[unfolded True s_waiting_def, folded wq_def, unfolded wq_es_cs] |
|
936 by simp |
|
937 from th'_in_inv[OF this] have "t \<in> set rest" . |
|
938 with wq_s_cs[folded otherwise] wq_distinct[of cs] |
|
939 show ?thesis by simp |
|
940 next |
672 case False |
941 case False |
673 with nhd hd show ?thesis |
942 have "wq (e#s) c = wq s c" using False |
674 by (unfold cs_holding_def wq_def, auto simp:Let_def) |
943 by (unfold is_v, simp) |
675 next |
944 hence "waiting s t c" using assms |
676 case True |
945 by (simp add: cs_waiting_def waiting_eq) |
677 with step_back_step [OF vt] |
946 hence "t \<notin> readys s" by (unfold readys_def, auto) |
678 have "step s (V th c)" by simp |
947 hence "t \<notin> runing s" using runing_ready by auto |
679 hence "next_th s th cs t" |
948 with runing_th_s[folded otherwise] show ?thesis by auto |
680 proof(cases) |
949 qed |
681 assume "holding s th c" |
950 qed |
682 with nhd hd show ?thesis |
951 |
683 apply (unfold s_holding_def cs_holding_def wq_def next_th_def, |
952 lemma waiting_esI1: |
684 auto simp:Let_def split:list.splits if_splits) |
953 assumes "waiting s t c" |
685 proof - |
954 and "c \<noteq> cs" |
686 assume " hd (SOME q. distinct q \<and> q = []) \<in> set (SOME q. distinct q \<and> q = [])" |
955 shows "waiting (e#s) t c" |
687 moreover have "\<dots> = set []" |
956 proof - |
688 proof(rule someI2) |
957 have "wq (e#s) c = wq s c" |
689 show "distinct [] \<and> [] = []" by auto |
958 using assms(2) is_v by auto |
690 next |
959 with assms(1) show ?thesis |
691 fix x assume "distinct x \<and> x = []" |
960 using cs_waiting_def waiting_eq by auto |
692 thus "set x = set []" by auto |
961 qed |
693 qed |
962 |
694 ultimately show False by auto |
963 lemma holding_esI2: |
|
964 assumes "c \<noteq> cs" |
|
965 and "holding s t c" |
|
966 shows "holding (e#s) t c" |
|
967 proof - |
|
968 from assms(1) have "wq (e#s) c = wq s c" using is_v by auto |
|
969 from assms(2)[unfolded s_holding_def, folded wq_def, |
|
970 folded this, unfolded wq_def, folded s_holding_def] |
|
971 show ?thesis . |
|
972 qed |
|
973 |
|
974 lemma holding_esI1: |
|
975 assumes "holding s t c" |
|
976 and "t \<noteq> th" |
|
977 shows "holding (e#s) t c" |
|
978 proof - |
|
979 have "c \<noteq> cs" using assms using holding_cs_eq_th by blast |
|
980 from holding_esI2[OF this assms(1)] |
|
981 show ?thesis . |
|
982 qed |
|
983 |
|
984 end |
|
985 |
|
986 context valid_trace_v_n |
|
987 begin |
|
988 |
|
989 lemma neq_wq': "wq' \<noteq> []" |
|
990 proof (unfold wq'_def, rule someI2) |
|
991 show "distinct rest \<and> set rest = set rest" |
|
992 by (simp add: distinct_rest) |
|
993 next |
|
994 fix x |
|
995 assume " distinct x \<and> set x = set rest" |
|
996 thus "x \<noteq> []" using rest_nnl by auto |
|
997 qed |
|
998 |
|
999 definition "taker = hd wq'" |
|
1000 |
|
1001 definition "rest' = tl wq'" |
|
1002 |
|
1003 lemma eq_wq': "wq' = taker # rest'" |
|
1004 by (simp add: neq_wq' rest'_def taker_def) |
|
1005 |
|
1006 lemma next_th_taker: |
|
1007 shows "next_th s th cs taker" |
|
1008 using rest_nnl taker_def wq'_def wq_s_cs |
|
1009 by (auto simp:next_th_def) |
|
1010 |
|
1011 lemma taker_unique: |
|
1012 assumes "next_th s th cs taker'" |
|
1013 shows "taker' = taker" |
|
1014 proof - |
|
1015 from assms |
|
1016 obtain rest' where |
|
1017 h: "wq s cs = th # rest'" |
|
1018 "taker' = hd (SOME q. distinct q \<and> set q = set rest')" |
|
1019 by (unfold next_th_def, auto) |
|
1020 with wq_s_cs have "rest' = rest" by auto |
|
1021 thus ?thesis using h(2) taker_def wq'_def by auto |
|
1022 qed |
|
1023 |
|
1024 lemma waiting_set_eq: |
|
1025 "{(Th th', Cs cs) |th'. next_th s th cs th'} = {(Th taker, Cs cs)}" |
|
1026 by (smt all_not_in_conv bot.extremum insertI1 insert_subset |
|
1027 mem_Collect_eq next_th_taker subsetI subset_antisym taker_def taker_unique) |
|
1028 |
|
1029 lemma holding_set_eq: |
|
1030 "{(Cs cs, Th th') |th'. next_th s th cs th'} = {(Cs cs, Th taker)}" |
|
1031 using next_th_taker taker_def waiting_set_eq |
|
1032 by fastforce |
|
1033 |
|
1034 lemma holding_taker: |
|
1035 shows "holding (e#s) taker cs" |
|
1036 by (unfold s_holding_def, fold wq_def, unfold wq_es_cs, |
|
1037 auto simp:neq_wq' taker_def) |
|
1038 |
|
1039 lemma waiting_esI2: |
|
1040 assumes "waiting s t cs" |
|
1041 and "t \<noteq> taker" |
|
1042 shows "waiting (e#s) t cs" |
|
1043 proof - |
|
1044 have "t \<in> set wq'" |
|
1045 proof(unfold wq'_def, rule someI2) |
|
1046 show "distinct rest \<and> set rest = set rest" |
|
1047 by (simp add: distinct_rest) |
|
1048 next |
|
1049 fix x |
|
1050 assume "distinct x \<and> set x = set rest" |
|
1051 moreover have "t \<in> set rest" |
|
1052 using assms(1) cs_waiting_def waiting_eq wq_s_cs by auto |
|
1053 ultimately show "t \<in> set x" by simp |
|
1054 qed |
|
1055 moreover have "t \<noteq> hd wq'" |
|
1056 using assms(2) taker_def by auto |
|
1057 ultimately show ?thesis |
|
1058 by (unfold s_waiting_def, fold wq_def, unfold wq_es_cs, simp) |
|
1059 qed |
|
1060 |
|
1061 lemma waiting_esE: |
|
1062 assumes "waiting (e#s) t c" |
|
1063 obtains "c \<noteq> cs" "waiting s t c" |
|
1064 | "c = cs" "t \<noteq> taker" "waiting s t cs" "t \<in> set rest'" |
|
1065 proof(cases "c = cs") |
|
1066 case False |
|
1067 hence "wq (e#s) c = wq s c" using is_v by auto |
|
1068 with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto |
|
1069 from that(1)[OF False this] show ?thesis . |
|
1070 next |
|
1071 case True |
|
1072 from assms[unfolded s_waiting_def True, folded wq_def, unfolded wq_es_cs] |
|
1073 have "t \<noteq> hd wq'" "t \<in> set wq'" by auto |
|
1074 hence "t \<noteq> taker" by (simp add: taker_def) |
|
1075 moreover hence "t \<noteq> th" using assms neq_t_th by blast |
|
1076 moreover have "t \<in> set rest" by (simp add: `t \<in> set wq'` th'_in_inv) |
|
1077 ultimately have "waiting s t cs" |
|
1078 by (metis cs_waiting_def list.distinct(2) list.sel(1) |
|
1079 list.set_sel(2) rest_def waiting_eq wq_s_cs) |
|
1080 show ?thesis using that(2) |
|
1081 using True `t \<in> set wq'` `t \<noteq> taker` `waiting s t cs` eq_wq' by auto |
|
1082 qed |
|
1083 |
|
1084 lemma holding_esI1: |
|
1085 assumes "c = cs" |
|
1086 and "t = taker" |
|
1087 shows "holding (e#s) t c" |
|
1088 by (unfold assms, simp add: holding_taker) |
|
1089 |
|
1090 lemma holding_esE: |
|
1091 assumes "holding (e#s) t c" |
|
1092 obtains "c = cs" "t = taker" |
|
1093 | "c \<noteq> cs" "holding s t c" |
|
1094 proof(cases "c = cs") |
|
1095 case True |
|
1096 from assms[unfolded True, unfolded s_holding_def, |
|
1097 folded wq_def, unfolded wq_es_cs] |
|
1098 have "t = taker" by (simp add: taker_def) |
|
1099 from that(1)[OF True this] show ?thesis . |
|
1100 next |
|
1101 case False |
|
1102 hence "wq (e#s) c = wq s c" using is_v by auto |
|
1103 from assms[unfolded s_holding_def, folded wq_def, |
|
1104 unfolded this, unfolded wq_def, folded s_holding_def] |
|
1105 have "holding s t c" . |
|
1106 from that(2)[OF False this] show ?thesis . |
|
1107 qed |
|
1108 |
|
1109 end |
|
1110 |
|
1111 |
|
1112 context valid_trace_v_e |
|
1113 begin |
|
1114 |
|
1115 lemma nil_wq': "wq' = []" |
|
1116 proof (unfold wq'_def, rule someI2) |
|
1117 show "distinct rest \<and> set rest = set rest" |
|
1118 by (simp add: distinct_rest) |
|
1119 next |
|
1120 fix x |
|
1121 assume " distinct x \<and> set x = set rest" |
|
1122 thus "x = []" using rest_nil by auto |
|
1123 qed |
|
1124 |
|
1125 lemma no_taker: |
|
1126 assumes "next_th s th cs taker" |
|
1127 shows "False" |
|
1128 proof - |
|
1129 from assms[unfolded next_th_def] |
|
1130 obtain rest' where "wq s cs = th # rest'" "rest' \<noteq> []" |
|
1131 by auto |
|
1132 thus ?thesis using rest_def rest_nil by auto |
|
1133 qed |
|
1134 |
|
1135 lemma waiting_set_eq: |
|
1136 "{(Th th', Cs cs) |th'. next_th s th cs th'} = {}" |
|
1137 using no_taker by auto |
|
1138 |
|
1139 lemma holding_set_eq: |
|
1140 "{(Cs cs, Th th') |th'. next_th s th cs th'} = {}" |
|
1141 using no_taker by auto |
|
1142 |
|
1143 lemma no_holding: |
|
1144 assumes "holding (e#s) taker cs" |
|
1145 shows False |
|
1146 proof - |
|
1147 from wq_es_cs[unfolded nil_wq'] |
|
1148 have " wq (e # s) cs = []" . |
|
1149 from assms[unfolded s_holding_def, folded wq_def, unfolded this] |
|
1150 show ?thesis by auto |
|
1151 qed |
|
1152 |
|
1153 lemma no_waiting: |
|
1154 assumes "waiting (e#s) t cs" |
|
1155 shows False |
|
1156 proof - |
|
1157 from wq_es_cs[unfolded nil_wq'] |
|
1158 have " wq (e # s) cs = []" . |
|
1159 from assms[unfolded s_waiting_def, folded wq_def, unfolded this] |
|
1160 show ?thesis by auto |
|
1161 qed |
|
1162 |
|
1163 lemma waiting_esI2: |
|
1164 assumes "waiting s t c" |
|
1165 shows "waiting (e#s) t c" |
|
1166 proof - |
|
1167 have "c \<noteq> cs" using assms |
|
1168 using cs_waiting_def rest_nil waiting_eq wq_s_cs by auto |
|
1169 from waiting_esI1[OF assms this] |
|
1170 show ?thesis . |
|
1171 qed |
|
1172 |
|
1173 lemma waiting_esE: |
|
1174 assumes "waiting (e#s) t c" |
|
1175 obtains "c \<noteq> cs" "waiting s t c" |
|
1176 proof(cases "c = cs") |
|
1177 case False |
|
1178 hence "wq (e#s) c = wq s c" using is_v by auto |
|
1179 with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto |
|
1180 from that(1)[OF False this] show ?thesis . |
|
1181 next |
|
1182 case True |
|
1183 from no_waiting[OF assms[unfolded True]] |
|
1184 show ?thesis by auto |
|
1185 qed |
|
1186 |
|
1187 lemma holding_esE: |
|
1188 assumes "holding (e#s) t c" |
|
1189 obtains "c \<noteq> cs" "holding s t c" |
|
1190 proof(cases "c = cs") |
|
1191 case True |
|
1192 from no_holding[OF assms[unfolded True]] |
|
1193 show ?thesis by auto |
|
1194 next |
|
1195 case False |
|
1196 hence "wq (e#s) c = wq s c" using is_v by auto |
|
1197 from assms[unfolded s_holding_def, folded wq_def, |
|
1198 unfolded this, unfolded wq_def, folded s_holding_def] |
|
1199 have "holding s t c" . |
|
1200 from that[OF False this] show ?thesis . |
|
1201 qed |
|
1202 |
|
1203 end |
|
1204 |
|
1205 lemma rel_eqI: |
|
1206 assumes "\<And> x y. (x,y) \<in> A \<Longrightarrow> (x,y) \<in> B" |
|
1207 and "\<And> x y. (x,y) \<in> B \<Longrightarrow> (x, y) \<in> A" |
|
1208 shows "A = B" |
|
1209 using assms by auto |
|
1210 |
|
1211 lemma in_RAG_E: |
|
1212 assumes "(n1, n2) \<in> RAG (s::state)" |
|
1213 obtains (waiting) th cs where "n1 = Th th" "n2 = Cs cs" "waiting s th cs" |
|
1214 | (holding) th cs where "n1 = Cs cs" "n2 = Th th" "holding s th cs" |
|
1215 using assms[unfolded s_RAG_def, folded waiting_eq holding_eq] |
|
1216 by auto |
|
1217 |
|
1218 context valid_trace_v |
|
1219 begin |
|
1220 |
|
1221 lemma RAG_es: |
|
1222 "RAG (e # s) = |
|
1223 RAG s - {(Cs cs, Th th)} - |
|
1224 {(Th th', Cs cs) |th'. next_th s th cs th'} \<union> |
|
1225 {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R") |
|
1226 proof(rule rel_eqI) |
|
1227 fix n1 n2 |
|
1228 assume "(n1, n2) \<in> ?L" |
|
1229 thus "(n1, n2) \<in> ?R" |
|
1230 proof(cases rule:in_RAG_E) |
|
1231 case (waiting th' cs') |
|
1232 show ?thesis |
|
1233 proof(cases "rest = []") |
|
1234 case False |
|
1235 interpret h_n: valid_trace_v_n s e th cs |
|
1236 by (unfold_locales, insert False, simp) |
|
1237 from waiting(3) |
|
1238 show ?thesis |
|
1239 proof(cases rule:h_n.waiting_esE) |
|
1240 case 1 |
|
1241 with waiting(1,2) |
|
1242 show ?thesis |
|
1243 by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def, |
|
1244 fold waiting_eq, auto) |
|
1245 next |
|
1246 case 2 |
|
1247 with waiting(1,2) |
|
1248 show ?thesis |
|
1249 by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def, |
|
1250 fold waiting_eq, auto) |
|
1251 qed |
|
1252 next |
|
1253 case True |
|
1254 interpret h_e: valid_trace_v_e s e th cs |
|
1255 by (unfold_locales, insert True, simp) |
|
1256 from waiting(3) |
|
1257 show ?thesis |
|
1258 proof(cases rule:h_e.waiting_esE) |
|
1259 case 1 |
|
1260 with waiting(1,2) |
|
1261 show ?thesis |
|
1262 by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def, |
|
1263 fold waiting_eq, auto) |
|
1264 qed |
|
1265 qed |
|
1266 next |
|
1267 case (holding th' cs') |
|
1268 show ?thesis |
|
1269 proof(cases "rest = []") |
|
1270 case False |
|
1271 interpret h_n: valid_trace_v_n s e th cs |
|
1272 by (unfold_locales, insert False, simp) |
|
1273 from holding(3) |
|
1274 show ?thesis |
|
1275 proof(cases rule:h_n.holding_esE) |
|
1276 case 1 |
|
1277 with holding(1,2) |
|
1278 show ?thesis |
|
1279 by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def, |
|
1280 fold waiting_eq, auto) |
|
1281 next |
|
1282 case 2 |
|
1283 with holding(1,2) |
|
1284 show ?thesis |
|
1285 by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def, |
|
1286 fold holding_eq, auto) |
|
1287 qed |
|
1288 next |
|
1289 case True |
|
1290 interpret h_e: valid_trace_v_e s e th cs |
|
1291 by (unfold_locales, insert True, simp) |
|
1292 from holding(3) |
|
1293 show ?thesis |
|
1294 proof(cases rule:h_e.holding_esE) |
|
1295 case 1 |
|
1296 with holding(1,2) |
|
1297 show ?thesis |
|
1298 by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def, |
|
1299 fold holding_eq, auto) |
|
1300 qed |
|
1301 qed |
|
1302 qed |
|
1303 next |
|
1304 fix n1 n2 |
|
1305 assume h: "(n1, n2) \<in> ?R" |
|
1306 show "(n1, n2) \<in> ?L" |
|
1307 proof(cases "rest = []") |
|
1308 case False |
|
1309 interpret h_n: valid_trace_v_n s e th cs |
|
1310 by (unfold_locales, insert False, simp) |
|
1311 from h[unfolded h_n.waiting_set_eq h_n.holding_set_eq] |
|
1312 have "((n1, n2) \<in> RAG s \<and> (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th) |
|
1313 \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)) \<or> |
|
1314 (n2 = Th h_n.taker \<and> n1 = Cs cs)" |
|
1315 by auto |
|
1316 thus ?thesis |
|
1317 proof |
|
1318 assume "n2 = Th h_n.taker \<and> n1 = Cs cs" |
|
1319 with h_n.holding_taker |
|
1320 show ?thesis |
|
1321 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1322 next |
|
1323 assume h: "(n1, n2) \<in> RAG s \<and> |
|
1324 (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th) \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)" |
|
1325 hence "(n1, n2) \<in> RAG s" by simp |
|
1326 thus ?thesis |
|
1327 proof(cases rule:in_RAG_E) |
|
1328 case (waiting th' cs') |
|
1329 from h and this(1,2) |
|
1330 have "th' \<noteq> h_n.taker \<or> cs' \<noteq> cs" by auto |
|
1331 hence "waiting (e#s) th' cs'" |
|
1332 proof |
|
1333 assume "cs' \<noteq> cs" |
|
1334 from waiting_esI1[OF waiting(3) this] |
|
1335 show ?thesis . |
|
1336 next |
|
1337 assume neq_th': "th' \<noteq> h_n.taker" |
|
1338 show ?thesis |
|
1339 proof(cases "cs' = cs") |
|
1340 case False |
|
1341 from waiting_esI1[OF waiting(3) this] |
|
1342 show ?thesis . |
695 next |
1343 next |
696 assume " hd (SOME q. distinct q \<and> q = []) \<in> set (SOME q. distinct q \<and> q = [])" |
1344 case True |
697 moreover have "\<dots> = set []" |
1345 from h_n.waiting_esI2[OF waiting(3)[unfolded True] neq_th', folded True] |
698 proof(rule someI2) |
1346 show ?thesis . |
699 show "distinct [] \<and> [] = []" by auto |
|
700 next |
|
701 fix x assume "distinct x \<and> x = []" |
|
702 thus "set x = set []" by auto |
|
703 qed |
|
704 ultimately show False by auto |
|
705 qed |
1347 qed |
706 qed |
1348 qed |
707 with True show ?thesis by auto |
1349 thus ?thesis using waiting(1,2) |
708 qed |
1350 by (unfold s_RAG_def, fold waiting_eq, auto) |
709 qed |
1351 next |
710 |
1352 case (holding th' cs') |
711 text {* |
1353 from h this(1,2) |
712 The following @{text "step_v_wait_inv"} is also an obvious lemma, which, however, needs to be |
1354 have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto |
713 derived from scratch, which confirms the correctness of the definition of @{text "next_th"}. |
1355 hence "holding (e#s) th' cs'" |
714 *} |
1356 proof |
715 lemma step_v_wait_inv[elim_format]: |
1357 assume "cs' \<noteq> cs" |
716 "\<And>t c. \<lbrakk>vt (V th cs # s); \<not> waiting (wq (V th cs # s)) t c; waiting (wq s) t c |
1358 from holding_esI2[OF this holding(3)] |
717 \<rbrakk> |
1359 show ?thesis . |
718 \<Longrightarrow> (next_th s th cs t \<and> cs = c)" |
|
719 proof - |
|
720 fix t c |
|
721 assume vt: "vt (V th cs # s)" |
|
722 and nw: "\<not> waiting (wq (V th cs # s)) t c" |
|
723 and wt: "waiting (wq s) t c" |
|
724 from vt interpret vt_v: valid_trace_e s "V th cs" |
|
725 by (cases, unfold_locales, simp) |
|
726 show "next_th s th cs t \<and> cs = c" |
|
727 proof(cases "cs = c") |
|
728 case False |
|
729 with nw wt show ?thesis |
|
730 by (auto simp:cs_waiting_def wq_def Let_def) |
|
731 next |
|
732 case True |
|
733 from nw[folded True] wt[folded True] |
|
734 have "next_th s th cs t" |
|
735 apply (unfold next_th_def, auto simp:cs_waiting_def wq_def Let_def split:list.splits) |
|
736 proof - |
|
737 fix a list |
|
738 assume t_in: "t \<in> set list" |
|
739 and t_ni: "t \<notin> set (SOME q. distinct q \<and> set q = set list)" |
|
740 and eq_wq: "wq_fun (schs s) cs = a # list" |
|
741 have " set (SOME q. distinct q \<and> set q = set list) = set list" |
|
742 proof(rule someI2) |
|
743 from vt_v.wq_distinct[of cs] and eq_wq[folded wq_def] |
|
744 show "distinct list \<and> set list = set list" by auto |
|
745 next |
1360 next |
746 show "\<And>x. distinct x \<and> set x = set list \<Longrightarrow> set x = set list" |
1361 assume "th' \<noteq> th" |
747 by auto |
1362 from holding_esI1[OF holding(3) this] |
|
1363 show ?thesis . |
748 qed |
1364 qed |
749 with t_ni and t_in show "a = th" by auto |
1365 thus ?thesis using holding(1,2) |
|
1366 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1367 qed |
|
1368 qed |
|
1369 next |
|
1370 case True |
|
1371 interpret h_e: valid_trace_v_e s e th cs |
|
1372 by (unfold_locales, insert True, simp) |
|
1373 from h[unfolded h_e.waiting_set_eq h_e.holding_set_eq] |
|
1374 have h_s: "(n1, n2) \<in> RAG s" "(n1, n2) \<noteq> (Cs cs, Th th)" |
|
1375 by auto |
|
1376 from h_s(1) |
|
1377 show ?thesis |
|
1378 proof(cases rule:in_RAG_E) |
|
1379 case (waiting th' cs') |
|
1380 from h_e.waiting_esI2[OF this(3)] |
|
1381 show ?thesis using waiting(1,2) |
|
1382 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1383 next |
|
1384 case (holding th' cs') |
|
1385 with h_s(2) |
|
1386 have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto |
|
1387 thus ?thesis |
|
1388 proof |
|
1389 assume neq_cs: "cs' \<noteq> cs" |
|
1390 from holding_esI2[OF this holding(3)] |
|
1391 show ?thesis using holding(1,2) |
|
1392 by (unfold s_RAG_def, fold holding_eq, auto) |
750 next |
1393 next |
751 fix a list |
1394 assume "th' \<noteq> th" |
752 assume t_in: "t \<in> set list" |
1395 from holding_esI1[OF holding(3) this] |
753 and t_ni: "t \<notin> set (SOME q. distinct q \<and> set q = set list)" |
1396 show ?thesis using holding(1,2) |
754 and eq_wq: "wq_fun (schs s) cs = a # list" |
1397 by (unfold s_RAG_def, fold holding_eq, auto) |
755 have " set (SOME q. distinct q \<and> set q = set list) = set list" |
1398 qed |
756 proof(rule someI2) |
1399 qed |
757 from vt_v.wq_distinct[of cs] and eq_wq[folded wq_def] |
1400 qed |
758 show "distinct list \<and> set list = set list" by auto |
1401 qed |
759 next |
1402 |
760 show "\<And>x. distinct x \<and> set x = set list \<Longrightarrow> set x = set list" |
1403 end |
761 by auto |
1404 |
762 qed |
1405 lemma step_RAG_v: |
763 with t_ni and t_in show "t = hd (SOME q. distinct q \<and> set q = set list)" by auto |
|
764 next |
|
765 fix a list |
|
766 assume eq_wq: "wq_fun (schs s) cs = a # list" |
|
767 from step_back_step[OF vt] |
|
768 show "a = th" |
|
769 proof(cases) |
|
770 assume "holding s th cs" |
|
771 with eq_wq show ?thesis |
|
772 by (unfold s_holding_def wq_def, auto) |
|
773 qed |
|
774 qed |
|
775 with True show ?thesis by simp |
|
776 qed |
|
777 qed |
|
778 |
|
779 lemma step_v_not_wait[consumes 3]: |
|
780 "\<lbrakk>vt (V th cs # s); next_th s th cs t; waiting (wq (V th cs # s)) t cs\<rbrakk> \<Longrightarrow> False" |
|
781 by (unfold next_th_def cs_waiting_def wq_def, auto simp:Let_def) |
|
782 |
|
783 lemma step_v_release: |
|
784 "\<lbrakk>vt (V th cs # s); holding (wq (V th cs # s)) th cs\<rbrakk> \<Longrightarrow> False" |
|
785 proof - |
|
786 assume vt: "vt (V th cs # s)" |
|
787 and hd: "holding (wq (V th cs # s)) th cs" |
|
788 from vt interpret vt_v: valid_trace_e s "V th cs" |
|
789 by (cases, unfold_locales, simp+) |
|
790 from step_back_step [OF vt] and hd |
|
791 show "False" |
|
792 proof(cases) |
|
793 assume "holding (wq (V th cs # s)) th cs" and "holding s th cs" |
|
794 thus ?thesis |
|
795 apply (unfold s_holding_def wq_def cs_holding_def) |
|
796 apply (auto simp:Let_def split:list.splits) |
|
797 proof - |
|
798 fix list |
|
799 assume eq_wq[folded wq_def]: |
|
800 "wq_fun (schs s) cs = hd (SOME q. distinct q \<and> set q = set list) # list" |
|
801 and hd_in: "hd (SOME q. distinct q \<and> set q = set list) |
|
802 \<in> set (SOME q. distinct q \<and> set q = set list)" |
|
803 have "set (SOME q. distinct q \<and> set q = set list) = set list" |
|
804 proof(rule someI2) |
|
805 from vt_v.wq_distinct[of cs] and eq_wq |
|
806 show "distinct list \<and> set list = set list" by auto |
|
807 next |
|
808 show "\<And>x. distinct x \<and> set x = set list \<Longrightarrow> set x = set list" |
|
809 by auto |
|
810 qed |
|
811 moreover have "distinct (hd (SOME q. distinct q \<and> set q = set list) # list)" |
|
812 proof - |
|
813 from vt_v.wq_distinct[of cs] and eq_wq |
|
814 show ?thesis by auto |
|
815 qed |
|
816 moreover note eq_wq and hd_in |
|
817 ultimately show "False" by auto |
|
818 qed |
|
819 qed |
|
820 qed |
|
821 |
|
822 lemma step_v_get_hold: |
|
823 "\<And>th'. \<lbrakk>vt (V th cs # s); \<not> holding (wq (V th cs # s)) th' cs; next_th s th cs th'\<rbrakk> \<Longrightarrow> False" |
|
824 apply (unfold cs_holding_def next_th_def wq_def, |
|
825 auto simp:Let_def) |
|
826 proof - |
|
827 fix rest |
|
828 assume vt: "vt (V th cs # s)" |
|
829 and eq_wq[folded wq_def]: " wq_fun (schs s) cs = th # rest" |
|
830 and nrest: "rest \<noteq> []" |
|
831 and ni: "hd (SOME q. distinct q \<and> set q = set rest) |
|
832 \<notin> set (SOME q. distinct q \<and> set q = set rest)" |
|
833 from vt interpret vt_v: valid_trace_e s "V th cs" |
|
834 by (cases, unfold_locales, simp+) |
|
835 have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []" |
|
836 proof(rule someI2) |
|
837 from vt_v.wq_distinct[of cs] and eq_wq |
|
838 show "distinct rest \<and> set rest = set rest" by auto |
|
839 next |
|
840 fix x assume "distinct x \<and> set x = set rest" |
|
841 hence "set x = set rest" by auto |
|
842 with nrest |
|
843 show "x \<noteq> []" by (case_tac x, auto) |
|
844 qed |
|
845 with ni show "False" by auto |
|
846 qed |
|
847 |
|
848 lemma step_v_release_inv[elim_format]: |
|
849 "\<And>c t. \<lbrakk>vt (V th cs # s); \<not> holding (wq (V th cs # s)) t c; holding (wq s) t c\<rbrakk> \<Longrightarrow> |
|
850 c = cs \<and> t = th" |
|
851 apply (unfold cs_holding_def wq_def, auto simp:Let_def split:if_splits list.splits) |
|
852 proof - |
|
853 fix a list |
|
854 assume vt: "vt (V th cs # s)" and eq_wq: "wq_fun (schs s) cs = a # list" |
|
855 from step_back_step [OF vt] show "a = th" |
|
856 proof(cases) |
|
857 assume "holding s th cs" with eq_wq |
|
858 show ?thesis |
|
859 by (unfold s_holding_def wq_def, auto) |
|
860 qed |
|
861 next |
|
862 fix a list |
|
863 assume vt: "vt (V th cs # s)" and eq_wq: "wq_fun (schs s) cs = a # list" |
|
864 from step_back_step [OF vt] show "a = th" |
|
865 proof(cases) |
|
866 assume "holding s th cs" with eq_wq |
|
867 show ?thesis |
|
868 by (unfold s_holding_def wq_def, auto) |
|
869 qed |
|
870 qed |
|
871 |
|
872 lemma step_v_waiting_mono: |
|
873 "\<And>t c. \<lbrakk>vt (V th cs # s); waiting (wq (V th cs # s)) t c\<rbrakk> \<Longrightarrow> waiting (wq s) t c" |
|
874 proof - |
|
875 fix t c |
|
876 let ?s' = "(V th cs # s)" |
|
877 assume vt: "vt ?s'" |
|
878 and wt: "waiting (wq ?s') t c" |
|
879 from vt interpret vt_v: valid_trace_e s "V th cs" |
|
880 by (cases, unfold_locales, simp+) |
|
881 show "waiting (wq s) t c" |
|
882 proof(cases "c = cs") |
|
883 case False |
|
884 assume neq_cs: "c \<noteq> cs" |
|
885 hence "waiting (wq ?s') t c = waiting (wq s) t c" |
|
886 by (unfold cs_waiting_def wq_def, auto simp:Let_def) |
|
887 with wt show ?thesis by simp |
|
888 next |
|
889 case True |
|
890 with wt show ?thesis |
|
891 apply (unfold cs_waiting_def wq_def, auto simp:Let_def split:list.splits) |
|
892 proof - |
|
893 fix a list |
|
894 assume not_in: "t \<notin> set list" |
|
895 and is_in: "t \<in> set (SOME q. distinct q \<and> set q = set list)" |
|
896 and eq_wq: "wq_fun (schs s) cs = a # list" |
|
897 have "set (SOME q. distinct q \<and> set q = set list) = set list" |
|
898 proof(rule someI2) |
|
899 from vt_v.wq_distinct [of cs] |
|
900 and eq_wq[folded wq_def] |
|
901 show "distinct list \<and> set list = set list" by auto |
|
902 next |
|
903 fix x assume "distinct x \<and> set x = set list" |
|
904 thus "set x = set list" by auto |
|
905 qed |
|
906 with not_in is_in show "t = a" by auto |
|
907 next |
|
908 fix list |
|
909 assume is_waiting: "waiting (wq (V th cs # s)) t cs" |
|
910 and eq_wq: "wq_fun (schs s) cs = t # list" |
|
911 hence "t \<in> set list" |
|
912 apply (unfold wq_def, auto simp:Let_def cs_waiting_def) |
|
913 proof - |
|
914 assume " t \<in> set (SOME q. distinct q \<and> set q = set list)" |
|
915 moreover have "\<dots> = set list" |
|
916 proof(rule someI2) |
|
917 from vt_v.wq_distinct [of cs] |
|
918 and eq_wq[folded wq_def] |
|
919 show "distinct list \<and> set list = set list" by auto |
|
920 next |
|
921 fix x assume "distinct x \<and> set x = set list" |
|
922 thus "set x = set list" by auto |
|
923 qed |
|
924 ultimately show "t \<in> set list" by simp |
|
925 qed |
|
926 with eq_wq and vt_v.wq_distinct [of cs, unfolded wq_def] |
|
927 show False by auto |
|
928 qed |
|
929 qed |
|
930 qed |
|
931 |
|
932 text {* (* ddd *) |
|
933 The following @{text "step_RAG_v"} lemma charaterizes how @{text "RAG"} is changed |
|
934 with the happening of @{text "V"}-events: |
|
935 *} |
|
936 lemma step_RAG_v: |
|
937 assumes vt: |
1406 assumes vt: |
938 "vt (V th cs#s)" |
1407 "vt (V th cs#s)" |
939 shows " |
1408 shows " |
940 RAG (V th cs # s) = |
1409 RAG (V th cs # s) = |
941 RAG s - {(Cs cs, Th th)} - |
1410 RAG s - {(Cs cs, Th th)} - |
942 {(Th th', Cs cs) |th'. next_th s th cs th'} \<union> |
1411 {(Th th', Cs cs) |th'. next_th s th cs th'} \<union> |
943 {(Cs cs, Th th') |th'. next_th s th cs th'}" |
1412 {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R") |
944 apply (insert vt, unfold s_RAG_def) |
1413 proof - |
945 apply (auto split:if_splits list.splits simp:Let_def) |
1414 interpret vt_v: valid_trace_v s "V th cs" |
946 apply (auto elim: step_v_waiting_mono step_v_hold_inv |
1415 using assms step_back_vt by (unfold_locales, auto) |
947 step_v_release step_v_wait_inv |
1416 show ?thesis using vt_v.RAG_es . |
948 step_v_get_hold step_v_release_inv) |
1417 qed |
949 apply (erule_tac step_v_not_wait, auto) |
1418 |
950 done |
1419 lemma (in valid_trace_create) |
951 |
1420 th_not_in_threads: "th \<notin> threads s" |
952 text {* |
1421 proof - |
953 The following @{text "step_RAG_p"} lemma charaterizes how @{text "RAG"} is changed |
1422 from pip_e[unfolded is_create] |
954 with the happening of @{text "P"}-events: |
1423 show ?thesis by (cases, simp) |
955 *} |
1424 qed |
956 lemma step_RAG_p: |
1425 |
957 "vt (P th cs#s) \<Longrightarrow> |
1426 lemma (in valid_trace_create) |
958 RAG (P th cs # s) = (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)} |
1427 threads_es [simp]: "threads (e#s) = threads s \<union> {th}" |
959 else RAG s \<union> {(Th th, Cs cs)})" |
1428 by (unfold is_create, simp) |
960 apply(simp only: s_RAG_def wq_def) |
1429 |
961 apply (auto split:list.splits prod.splits simp:Let_def wq_def cs_waiting_def cs_holding_def) |
1430 lemma (in valid_trace_exit) |
962 apply(case_tac "csa = cs", auto) |
1431 threads_es [simp]: "threads (e#s) = threads s - {th}" |
963 apply(fold wq_def) |
1432 by (unfold is_exit, simp) |
964 apply(drule_tac step_back_step) |
1433 |
965 apply(ind_cases " step s (P (hd (wq s cs)) cs)") |
1434 lemma (in valid_trace_p) |
966 apply(simp add:s_RAG_def wq_def cs_holding_def) |
1435 threads_es [simp]: "threads (e#s) = threads s" |
967 apply(auto) |
1436 by (unfold is_p, simp) |
968 done |
1437 |
969 |
1438 lemma (in valid_trace_v) |
970 |
1439 threads_es [simp]: "threads (e#s) = threads s" |
971 lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs" |
1440 by (unfold is_v, simp) |
972 by (unfold s_RAG_def, auto) |
1441 |
|
1442 lemma (in valid_trace_v) |
|
1443 th_not_in_rest[simp]: "th \<notin> set rest" |
|
1444 proof |
|
1445 assume otherwise: "th \<in> set rest" |
|
1446 have "distinct (wq s cs)" by (simp add: wq_distinct) |
|
1447 from this[unfolded wq_s_cs] and otherwise |
|
1448 show False by auto |
|
1449 qed |
|
1450 |
|
1451 lemma (in valid_trace_v) |
|
1452 set_wq_es_cs [simp]: "set (wq (e#s) cs) = set (wq s cs) - {th}" |
|
1453 proof(unfold wq_es_cs wq'_def, rule someI2) |
|
1454 show "distinct rest \<and> set rest = set rest" |
|
1455 by (simp add: distinct_rest) |
|
1456 next |
|
1457 fix x |
|
1458 assume "distinct x \<and> set x = set rest" |
|
1459 thus "set x = set (wq s cs) - {th}" |
|
1460 by (unfold wq_s_cs, simp) |
|
1461 qed |
|
1462 |
|
1463 lemma (in valid_trace_exit) |
|
1464 th_not_in_wq: "th \<notin> set (wq s cs)" |
|
1465 proof - |
|
1466 from pip_e[unfolded is_exit] |
|
1467 show ?thesis |
|
1468 by (cases, unfold holdents_def s_holding_def, fold wq_def, |
|
1469 auto elim!:runing_wqE) |
|
1470 qed |
|
1471 |
|
1472 lemma (in valid_trace) wq_threads: |
|
1473 assumes "th \<in> set (wq s cs)" |
|
1474 shows "th \<in> threads s" |
|
1475 using assms |
|
1476 proof(induct rule:ind) |
|
1477 case (Nil) |
|
1478 thus ?case by (auto simp:wq_def) |
|
1479 next |
|
1480 case (Cons s e) |
|
1481 interpret vt_e: valid_trace_e s e using Cons by simp |
|
1482 show ?case |
|
1483 proof(cases e) |
|
1484 case (Create th' prio') |
|
1485 interpret vt: valid_trace_create s e th' prio' |
|
1486 using Create by (unfold_locales, simp) |
|
1487 show ?thesis |
|
1488 using Cons.hyps(2) Cons.prems by auto |
|
1489 next |
|
1490 case (Exit th') |
|
1491 interpret vt: valid_trace_exit s e th' |
|
1492 using Exit by (unfold_locales, simp) |
|
1493 show ?thesis |
|
1494 using Cons.hyps(2) Cons.prems vt.th_not_in_wq by auto |
|
1495 next |
|
1496 case (P th' cs') |
|
1497 interpret vt: valid_trace_p s e th' cs' |
|
1498 using P by (unfold_locales, simp) |
|
1499 show ?thesis |
|
1500 using Cons.hyps(2) Cons.prems readys_threads |
|
1501 runing_ready vt.is_p vt.runing_th_s vt_e.wq_in_inv |
|
1502 by fastforce |
|
1503 next |
|
1504 case (V th' cs') |
|
1505 interpret vt: valid_trace_v s e th' cs' |
|
1506 using V by (unfold_locales, simp) |
|
1507 show ?thesis using Cons |
|
1508 using vt.is_v vt.threads_es vt_e.wq_in_inv by blast |
|
1509 next |
|
1510 case (Set th' prio) |
|
1511 interpret vt: valid_trace_set s e th' prio |
|
1512 using Set by (unfold_locales, simp) |
|
1513 show ?thesis using Cons.hyps(2) Cons.prems vt.is_set |
|
1514 by (auto simp:wq_def Let_def) |
|
1515 qed |
|
1516 qed |
973 |
1517 |
974 context valid_trace |
1518 context valid_trace |
975 begin |
1519 begin |
976 |
1520 |
977 text {* |
1521 lemma dm_RAG_threads: |
978 The following lemma shows that @{text "RAG"} is acyclic. |
1522 assumes in_dom: "(Th th) \<in> Domain (RAG s)" |
979 The overall structure is by induction on the formation of @{text "vt s"} |
1523 shows "th \<in> threads s" |
980 and then case analysis on event @{text "e"}, where the non-trivial cases |
1524 proof - |
981 for those for @{text "V"} and @{text "P"} events. |
1525 from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto |
982 *} |
1526 moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto |
983 lemma acyclic_RAG: |
1527 ultimately have "(Th th, Cs cs) \<in> RAG s" by simp |
984 shows "acyclic (RAG s)" |
1528 hence "th \<in> set (wq s cs)" |
985 using vt |
1529 by (unfold s_RAG_def, auto simp:cs_waiting_def) |
986 proof(induct) |
1530 from wq_threads [OF this] show ?thesis . |
987 case (vt_cons s e) |
1531 qed |
988 interpret vt_s: valid_trace s using vt_cons(1) |
1532 |
|
1533 lemma rg_RAG_threads: |
|
1534 assumes "(Th th) \<in> Range (RAG s)" |
|
1535 shows "th \<in> threads s" |
|
1536 using assms |
|
1537 by (unfold s_RAG_def cs_waiting_def cs_holding_def, |
|
1538 auto intro:wq_threads) |
|
1539 |
|
1540 lemma RAG_threads: |
|
1541 assumes "(Th th) \<in> Field (RAG s)" |
|
1542 shows "th \<in> threads s" |
|
1543 using assms |
|
1544 by (metis Field_def UnE dm_RAG_threads rg_RAG_threads) |
|
1545 |
|
1546 end |
|
1547 |
|
1548 lemma (in valid_trace_v) |
|
1549 preced_es [simp]: "preced th (e#s) = preced th s" |
|
1550 by (unfold is_v preced_def, simp) |
|
1551 |
|
1552 lemma the_preced_v[simp]: "the_preced (V th cs#s) = the_preced s" |
|
1553 proof |
|
1554 fix th' |
|
1555 show "the_preced (V th cs # s) th' = the_preced s th'" |
|
1556 by (unfold the_preced_def preced_def, simp) |
|
1557 qed |
|
1558 |
|
1559 lemma (in valid_trace_v) |
|
1560 the_preced_es: "the_preced (e#s) = the_preced s" |
|
1561 by (unfold is_v preced_def, simp) |
|
1562 |
|
1563 context valid_trace_p |
|
1564 begin |
|
1565 |
|
1566 lemma not_holding_s_th_cs: "\<not> holding s th cs" |
|
1567 proof |
|
1568 assume otherwise: "holding s th cs" |
|
1569 from pip_e[unfolded is_p] |
|
1570 show False |
|
1571 proof(cases) |
|
1572 case (thread_P) |
|
1573 moreover have "(Cs cs, Th th) \<in> RAG s" |
|
1574 using otherwise cs_holding_def |
|
1575 holding_eq th_not_in_wq by auto |
|
1576 ultimately show ?thesis by auto |
|
1577 qed |
|
1578 qed |
|
1579 |
|
1580 lemma waiting_kept: |
|
1581 assumes "waiting s th' cs'" |
|
1582 shows "waiting (e#s) th' cs'" |
|
1583 using assms |
|
1584 by (metis cs_waiting_def hd_append2 list.sel(1) list.set_intros(2) |
|
1585 rotate1.simps(2) self_append_conv2 set_rotate1 |
|
1586 th_not_in_wq waiting_eq wq_es_cs wq_neq_simp) |
|
1587 |
|
1588 lemma holding_kept: |
|
1589 assumes "holding s th' cs'" |
|
1590 shows "holding (e#s) th' cs'" |
|
1591 proof(cases "cs' = cs") |
|
1592 case False |
|
1593 hence "wq (e#s) cs' = wq s cs'" by simp |
|
1594 with assms show ?thesis using cs_holding_def holding_eq by auto |
|
1595 next |
|
1596 case True |
|
1597 from assms[unfolded s_holding_def, folded wq_def] |
|
1598 obtain rest where eq_wq: "wq s cs' = th'#rest" |
|
1599 by (metis empty_iff list.collapse list.set(1)) |
|
1600 hence "wq (e#s) cs' = th'#(rest@[th])" |
|
1601 by (simp add: True wq_es_cs) |
|
1602 thus ?thesis |
|
1603 by (simp add: cs_holding_def holding_eq) |
|
1604 qed |
|
1605 |
|
1606 end |
|
1607 |
|
1608 locale valid_trace_p_h = valid_trace_p + |
|
1609 assumes we: "wq s cs = []" |
|
1610 |
|
1611 locale valid_trace_p_w = valid_trace_p + |
|
1612 assumes wne: "wq s cs \<noteq> []" |
|
1613 begin |
|
1614 |
|
1615 definition "holder = hd (wq s cs)" |
|
1616 definition "waiters = tl (wq s cs)" |
|
1617 definition "waiters' = waiters @ [th]" |
|
1618 |
|
1619 lemma wq_s_cs: "wq s cs = holder#waiters" |
|
1620 by (simp add: holder_def waiters_def wne) |
|
1621 |
|
1622 lemma wq_es_cs': "wq (e#s) cs = holder#waiters@[th]" |
|
1623 by (simp add: wq_es_cs wq_s_cs) |
|
1624 |
|
1625 lemma waiting_es_th_cs: "waiting (e#s) th cs" |
|
1626 using cs_waiting_def th_not_in_wq waiting_eq wq_es_cs' wq_s_cs by auto |
|
1627 |
|
1628 lemma RAG_edge: "(Th th, Cs cs) \<in> RAG (e#s)" |
|
1629 by (unfold s_RAG_def, fold waiting_eq, insert waiting_es_th_cs, auto) |
|
1630 |
|
1631 lemma holding_esE: |
|
1632 assumes "holding (e#s) th' cs'" |
|
1633 obtains "holding s th' cs'" |
|
1634 using assms |
|
1635 proof(cases "cs' = cs") |
|
1636 case False |
|
1637 hence "wq (e#s) cs' = wq s cs'" by simp |
|
1638 with assms show ?thesis |
|
1639 using cs_holding_def holding_eq that by auto |
|
1640 next |
|
1641 case True |
|
1642 with assms show ?thesis |
|
1643 by (metis cs_holding_def holding_eq list.sel(1) list.set_intros(1) that |
|
1644 wq_es_cs' wq_s_cs) |
|
1645 qed |
|
1646 |
|
1647 lemma waiting_esE: |
|
1648 assumes "waiting (e#s) th' cs'" |
|
1649 obtains "th' \<noteq> th" "waiting s th' cs'" |
|
1650 | "th' = th" "cs' = cs" |
|
1651 proof(cases "waiting s th' cs'") |
|
1652 case True |
|
1653 have "th' \<noteq> th" |
|
1654 proof |
|
1655 assume otherwise: "th' = th" |
|
1656 from True[unfolded this] |
|
1657 show False by (simp add: th_not_waiting) |
|
1658 qed |
|
1659 from that(1)[OF this True] show ?thesis . |
|
1660 next |
|
1661 case False |
|
1662 hence "th' = th \<and> cs' = cs" |
|
1663 by (metis assms cs_waiting_def holder_def list.sel(1) rotate1.simps(2) |
|
1664 set_ConsD set_rotate1 waiting_eq wq_es_cs wq_es_cs' wq_neq_simp) |
|
1665 with that(2) show ?thesis by metis |
|
1666 qed |
|
1667 |
|
1668 lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Th th, Cs cs)}" (is "?L = ?R") |
|
1669 proof(rule rel_eqI) |
|
1670 fix n1 n2 |
|
1671 assume "(n1, n2) \<in> ?L" |
|
1672 thus "(n1, n2) \<in> ?R" |
|
1673 proof(cases rule:in_RAG_E) |
|
1674 case (waiting th' cs') |
|
1675 from this(3) |
|
1676 show ?thesis |
|
1677 proof(cases rule:waiting_esE) |
|
1678 case 1 |
|
1679 thus ?thesis using waiting(1,2) |
|
1680 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1681 next |
|
1682 case 2 |
|
1683 thus ?thesis using waiting(1,2) by auto |
|
1684 qed |
|
1685 next |
|
1686 case (holding th' cs') |
|
1687 from this(3) |
|
1688 show ?thesis |
|
1689 proof(cases rule:holding_esE) |
|
1690 case 1 |
|
1691 with holding(1,2) |
|
1692 show ?thesis by (unfold s_RAG_def, fold holding_eq, auto) |
|
1693 qed |
|
1694 qed |
|
1695 next |
|
1696 fix n1 n2 |
|
1697 assume "(n1, n2) \<in> ?R" |
|
1698 hence "(n1, n2) \<in> RAG s \<or> (n1 = Th th \<and> n2 = Cs cs)" by auto |
|
1699 thus "(n1, n2) \<in> ?L" |
|
1700 proof |
|
1701 assume "(n1, n2) \<in> RAG s" |
|
1702 thus ?thesis |
|
1703 proof(cases rule:in_RAG_E) |
|
1704 case (waiting th' cs') |
|
1705 from waiting_kept[OF this(3)] |
|
1706 show ?thesis using waiting(1,2) |
|
1707 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1708 next |
|
1709 case (holding th' cs') |
|
1710 from holding_kept[OF this(3)] |
|
1711 show ?thesis using holding(1,2) |
|
1712 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1713 qed |
|
1714 next |
|
1715 assume "n1 = Th th \<and> n2 = Cs cs" |
|
1716 thus ?thesis using RAG_edge by auto |
|
1717 qed |
|
1718 qed |
|
1719 |
|
1720 end |
|
1721 |
|
1722 context valid_trace_p_h |
|
1723 begin |
|
1724 |
|
1725 lemma wq_es_cs': "wq (e#s) cs = [th]" |
|
1726 using wq_es_cs[unfolded we] by simp |
|
1727 |
|
1728 lemma holding_es_th_cs: |
|
1729 shows "holding (e#s) th cs" |
|
1730 proof - |
|
1731 from wq_es_cs' |
|
1732 have "th \<in> set (wq (e#s) cs)" "th = hd (wq (e#s) cs)" by auto |
|
1733 thus ?thesis using cs_holding_def holding_eq by blast |
|
1734 qed |
|
1735 |
|
1736 lemma RAG_edge: "(Cs cs, Th th) \<in> RAG (e#s)" |
|
1737 by (unfold s_RAG_def, fold holding_eq, insert holding_es_th_cs, auto) |
|
1738 |
|
1739 lemma waiting_esE: |
|
1740 assumes "waiting (e#s) th' cs'" |
|
1741 obtains "waiting s th' cs'" |
|
1742 using assms |
|
1743 by (metis cs_waiting_def event.distinct(15) is_p list.sel(1) |
|
1744 set_ConsD waiting_eq we wq_es_cs' wq_neq_simp wq_out_inv) |
|
1745 |
|
1746 lemma holding_esE: |
|
1747 assumes "holding (e#s) th' cs'" |
|
1748 obtains "cs' \<noteq> cs" "holding s th' cs'" |
|
1749 | "cs' = cs" "th' = th" |
|
1750 proof(cases "cs' = cs") |
|
1751 case True |
|
1752 from held_unique[OF holding_es_th_cs assms[unfolded True]] |
|
1753 have "th' = th" by simp |
|
1754 from that(2)[OF True this] show ?thesis . |
|
1755 next |
|
1756 case False |
|
1757 have "holding s th' cs'" using assms |
|
1758 using False cs_holding_def holding_eq by auto |
|
1759 from that(1)[OF False this] show ?thesis . |
|
1760 qed |
|
1761 |
|
1762 lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Cs cs, Th th)}" (is "?L = ?R") |
|
1763 proof(rule rel_eqI) |
|
1764 fix n1 n2 |
|
1765 assume "(n1, n2) \<in> ?L" |
|
1766 thus "(n1, n2) \<in> ?R" |
|
1767 proof(cases rule:in_RAG_E) |
|
1768 case (waiting th' cs') |
|
1769 from this(3) |
|
1770 show ?thesis |
|
1771 proof(cases rule:waiting_esE) |
|
1772 case 1 |
|
1773 thus ?thesis using waiting(1,2) |
|
1774 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1775 qed |
|
1776 next |
|
1777 case (holding th' cs') |
|
1778 from this(3) |
|
1779 show ?thesis |
|
1780 proof(cases rule:holding_esE) |
|
1781 case 1 |
|
1782 with holding(1,2) |
|
1783 show ?thesis by (unfold s_RAG_def, fold holding_eq, auto) |
|
1784 next |
|
1785 case 2 |
|
1786 with holding(1,2) show ?thesis by auto |
|
1787 qed |
|
1788 qed |
|
1789 next |
|
1790 fix n1 n2 |
|
1791 assume "(n1, n2) \<in> ?R" |
|
1792 hence "(n1, n2) \<in> RAG s \<or> (n1 = Cs cs \<and> n2 = Th th)" by auto |
|
1793 thus "(n1, n2) \<in> ?L" |
|
1794 proof |
|
1795 assume "(n1, n2) \<in> RAG s" |
|
1796 thus ?thesis |
|
1797 proof(cases rule:in_RAG_E) |
|
1798 case (waiting th' cs') |
|
1799 from waiting_kept[OF this(3)] |
|
1800 show ?thesis using waiting(1,2) |
|
1801 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1802 next |
|
1803 case (holding th' cs') |
|
1804 from holding_kept[OF this(3)] |
|
1805 show ?thesis using holding(1,2) |
|
1806 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1807 qed |
|
1808 next |
|
1809 assume "n1 = Cs cs \<and> n2 = Th th" |
|
1810 with holding_es_th_cs |
|
1811 show ?thesis |
|
1812 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1813 qed |
|
1814 qed |
|
1815 |
|
1816 end |
|
1817 |
|
1818 context valid_trace_p |
|
1819 begin |
|
1820 |
|
1821 lemma RAG_es': "RAG (e # s) = (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)} |
|
1822 else RAG s \<union> {(Th th, Cs cs)})" |
|
1823 proof(cases "wq s cs = []") |
|
1824 case True |
|
1825 interpret vt_p: valid_trace_p_h using True |
989 by (unfold_locales, simp) |
1826 by (unfold_locales, simp) |
990 assume ih: "acyclic (RAG s)" |
1827 show ?thesis by (simp add: vt_p.RAG_es vt_p.we) |
991 and stp: "step s e" |
1828 next |
992 and vt: "vt s" |
1829 case False |
|
1830 interpret vt_p: valid_trace_p_w using False |
|
1831 by (unfold_locales, simp) |
|
1832 show ?thesis by (simp add: vt_p.RAG_es vt_p.wne) |
|
1833 qed |
|
1834 |
|
1835 end |
|
1836 |
|
1837 lemma (in valid_trace_v_n) finite_waiting_set: |
|
1838 "finite {(Th th', Cs cs) |th'. next_th s th cs th'}" |
|
1839 by (simp add: waiting_set_eq) |
|
1840 |
|
1841 lemma (in valid_trace_v_n) finite_holding_set: |
|
1842 "finite {(Cs cs, Th th') |th'. next_th s th cs th'}" |
|
1843 by (simp add: holding_set_eq) |
|
1844 |
|
1845 lemma (in valid_trace_v_e) finite_waiting_set: |
|
1846 "finite {(Th th', Cs cs) |th'. next_th s th cs th'}" |
|
1847 by (simp add: waiting_set_eq) |
|
1848 |
|
1849 lemma (in valid_trace_v_e) finite_holding_set: |
|
1850 "finite {(Cs cs, Th th') |th'. next_th s th cs th'}" |
|
1851 by (simp add: holding_set_eq) |
|
1852 |
|
1853 context valid_trace_v |
|
1854 begin |
|
1855 |
|
1856 lemma |
|
1857 finite_RAG_kept: |
|
1858 assumes "finite (RAG s)" |
|
1859 shows "finite (RAG (e#s))" |
|
1860 proof(cases "rest = []") |
|
1861 case True |
|
1862 interpret vt: valid_trace_v_e using True |
|
1863 by (unfold_locales, simp) |
|
1864 show ?thesis using assms |
|
1865 by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp) |
|
1866 next |
|
1867 case False |
|
1868 interpret vt: valid_trace_v_n using False |
|
1869 by (unfold_locales, simp) |
|
1870 show ?thesis using assms |
|
1871 by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp) |
|
1872 qed |
|
1873 |
|
1874 end |
|
1875 |
|
1876 context valid_trace_v_e |
|
1877 begin |
|
1878 |
|
1879 lemma |
|
1880 acylic_RAG_kept: |
|
1881 assumes "acyclic (RAG s)" |
|
1882 shows "acyclic (RAG (e#s))" |
|
1883 proof(rule acyclic_subset[OF assms]) |
|
1884 show "RAG (e # s) \<subseteq> RAG s" |
|
1885 by (unfold RAG_es waiting_set_eq holding_set_eq, auto) |
|
1886 qed |
|
1887 |
|
1888 end |
|
1889 |
|
1890 context valid_trace_v_n |
|
1891 begin |
|
1892 |
|
1893 lemma waiting_taker: "waiting s taker cs" |
|
1894 apply (unfold s_waiting_def, fold wq_def, unfold wq_s_cs taker_def) |
|
1895 using eq_wq' th'_in_inv wq'_def by fastforce |
|
1896 |
|
1897 lemma |
|
1898 acylic_RAG_kept: |
|
1899 assumes "acyclic (RAG s)" |
|
1900 shows "acyclic (RAG (e#s))" |
|
1901 proof - |
|
1902 have "acyclic ((RAG s - {(Cs cs, Th th)} - {(Th taker, Cs cs)}) \<union> |
|
1903 {(Cs cs, Th taker)})" (is "acyclic (?A \<union> _)") |
|
1904 proof - |
|
1905 from assms |
|
1906 have "acyclic ?A" |
|
1907 by (rule acyclic_subset, auto) |
|
1908 moreover have "(Th taker, Cs cs) \<notin> ?A^*" |
|
1909 proof |
|
1910 assume otherwise: "(Th taker, Cs cs) \<in> ?A^*" |
|
1911 hence "(Th taker, Cs cs) \<in> ?A^+" |
|
1912 by (unfold rtrancl_eq_or_trancl, auto) |
|
1913 from tranclD[OF this] |
|
1914 obtain cs' where h: "(Th taker, Cs cs') \<in> ?A" |
|
1915 "(Th taker, Cs cs') \<in> RAG s" |
|
1916 by (unfold s_RAG_def, auto) |
|
1917 from this(2) have "waiting s taker cs'" |
|
1918 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1919 from waiting_unique[OF this waiting_taker] |
|
1920 have "cs' = cs" . |
|
1921 from h(1)[unfolded this] show False by auto |
|
1922 qed |
|
1923 ultimately show ?thesis by auto |
|
1924 qed |
|
1925 thus ?thesis |
|
1926 by (unfold RAG_es waiting_set_eq holding_set_eq, simp) |
|
1927 qed |
|
1928 |
|
1929 end |
|
1930 |
|
1931 context valid_trace_p_h |
|
1932 begin |
|
1933 |
|
1934 lemma |
|
1935 acylic_RAG_kept: |
|
1936 assumes "acyclic (RAG s)" |
|
1937 shows "acyclic (RAG (e#s))" |
|
1938 proof - |
|
1939 have "acyclic (RAG s \<union> {(Cs cs, Th th)})" (is "acyclic (?A \<union> _)") |
|
1940 proof - |
|
1941 from assms |
|
1942 have "acyclic ?A" |
|
1943 by (rule acyclic_subset, auto) |
|
1944 moreover have "(Th th, Cs cs) \<notin> ?A^*" |
|
1945 proof |
|
1946 assume otherwise: "(Th th, Cs cs) \<in> ?A^*" |
|
1947 hence "(Th th, Cs cs) \<in> ?A^+" |
|
1948 by (unfold rtrancl_eq_or_trancl, auto) |
|
1949 from tranclD[OF this] |
|
1950 obtain cs' where h: "(Th th, Cs cs') \<in> RAG s" |
|
1951 by (unfold s_RAG_def, auto) |
|
1952 hence "waiting s th cs'" |
|
1953 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1954 with th_not_waiting show False by auto |
|
1955 qed |
|
1956 ultimately show ?thesis by auto |
|
1957 qed |
|
1958 thus ?thesis by (unfold RAG_es, simp) |
|
1959 qed |
|
1960 |
|
1961 end |
|
1962 |
|
1963 context valid_trace_p_w |
|
1964 begin |
|
1965 |
|
1966 lemma |
|
1967 acylic_RAG_kept: |
|
1968 assumes "acyclic (RAG s)" |
|
1969 shows "acyclic (RAG (e#s))" |
|
1970 proof - |
|
1971 have "acyclic (RAG s \<union> {(Th th, Cs cs)})" (is "acyclic (?A \<union> _)") |
|
1972 proof - |
|
1973 from assms |
|
1974 have "acyclic ?A" |
|
1975 by (rule acyclic_subset, auto) |
|
1976 moreover have "(Cs cs, Th th) \<notin> ?A^*" |
|
1977 proof |
|
1978 assume otherwise: "(Cs cs, Th th) \<in> ?A^*" |
|
1979 from pip_e[unfolded is_p] |
|
1980 show False |
|
1981 proof(cases) |
|
1982 case (thread_P) |
|
1983 moreover from otherwise have "(Cs cs, Th th) \<in> ?A^+" |
|
1984 by (unfold rtrancl_eq_or_trancl, auto) |
|
1985 ultimately show ?thesis by auto |
|
1986 qed |
|
1987 qed |
|
1988 ultimately show ?thesis by auto |
|
1989 qed |
|
1990 thus ?thesis by (unfold RAG_es, simp) |
|
1991 qed |
|
1992 |
|
1993 end |
|
1994 |
|
1995 context valid_trace |
|
1996 begin |
|
1997 |
|
1998 lemma finite_RAG: |
|
1999 shows "finite (RAG s)" |
|
2000 proof(induct rule:ind) |
|
2001 case Nil |
|
2002 show ?case |
|
2003 by (auto simp: s_RAG_def cs_waiting_def |
|
2004 cs_holding_def wq_def acyclic_def) |
|
2005 next |
|
2006 case (Cons s e) |
|
2007 interpret vt_e: valid_trace_e s e using Cons by simp |
993 show ?case |
2008 show ?case |
994 proof(cases e) |
2009 proof(cases e) |
995 case (Create th prio) |
2010 case (Create th prio) |
996 with ih |
2011 interpret vt: valid_trace_create s e th prio using Create |
997 show ?thesis by (simp add:RAG_create_unchanged) |
2012 by (unfold_locales, simp) |
|
2013 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
998 next |
2014 next |
999 case (Exit th) |
2015 case (Exit th) |
1000 with ih show ?thesis by (simp add:RAG_exit_unchanged) |
2016 interpret vt: valid_trace_exit s e th using Exit |
|
2017 by (unfold_locales, simp) |
|
2018 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
|
2019 next |
|
2020 case (P th cs) |
|
2021 interpret vt: valid_trace_p s e th cs using P |
|
2022 by (unfold_locales, simp) |
|
2023 show ?thesis using Cons using vt.RAG_es' by auto |
1001 next |
2024 next |
1002 case (V th cs) |
2025 case (V th cs) |
1003 from V vt stp have vtt: "vt (V th cs#s)" by auto |
2026 interpret vt: valid_trace_v s e th cs using V |
1004 from step_RAG_v [OF this] |
2027 by (unfold_locales, simp) |
1005 have eq_de: |
2028 show ?thesis using Cons by (simp add: vt.finite_RAG_kept) |
1006 "RAG (e # s) = |
2029 next |
1007 RAG s - {(Cs cs, Th th)} - {(Th th', Cs cs) |th'. next_th s th cs th'} \<union> |
2030 case (Set th prio) |
1008 {(Cs cs, Th th') |th'. next_th s th cs th'}" |
2031 interpret vt: valid_trace_set s e th prio using Set |
1009 (is "?L = (?A - ?B - ?C) \<union> ?D") by (simp add:V) |
2032 by (unfold_locales, simp) |
1010 from ih have ac: "acyclic (?A - ?B - ?C)" by (auto elim:acyclic_subset) |
2033 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
1011 from step_back_step [OF vtt] |
2034 qed |
1012 have "step s (V th cs)" . |
2035 qed |
1013 thus ?thesis |
2036 |
1014 proof(cases) |
2037 lemma acyclic_RAG: |
1015 assume "holding s th cs" |
2038 shows "acyclic (RAG s)" |
1016 hence th_in: "th \<in> set (wq s cs)" and |
2039 proof(induct rule:ind) |
1017 eq_hd: "th = hd (wq s cs)" unfolding s_holding_def wq_def by auto |
2040 case Nil |
1018 then obtain rest where |
2041 show ?case |
1019 eq_wq: "wq s cs = th#rest" |
2042 by (auto simp: s_RAG_def cs_waiting_def |
1020 by (cases "wq s cs", auto) |
2043 cs_holding_def wq_def acyclic_def) |
1021 show ?thesis |
2044 next |
1022 proof(cases "rest = []") |
2045 case (Cons s e) |
1023 case False |
2046 interpret vt_e: valid_trace_e s e using Cons by simp |
1024 let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)" |
2047 show ?case |
1025 from eq_wq False have eq_D: "?D = {(Cs cs, Th ?th')}" |
2048 proof(cases e) |
1026 by (unfold next_th_def, auto) |
2049 case (Create th prio) |
1027 let ?E = "(?A - ?B - ?C)" |
2050 interpret vt: valid_trace_create s e th prio using Create |
1028 have "(Th ?th', Cs cs) \<notin> ?E\<^sup>*" |
2051 by (unfold_locales, simp) |
1029 proof |
2052 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
1030 assume "(Th ?th', Cs cs) \<in> ?E\<^sup>*" |
2053 next |
1031 hence " (Th ?th', Cs cs) \<in> ?E\<^sup>+" by (simp add: rtrancl_eq_or_trancl) |
2054 case (Exit th) |
1032 from tranclD [OF this] |
2055 interpret vt: valid_trace_exit s e th using Exit |
1033 obtain x where th'_e: "(Th ?th', x) \<in> ?E" by blast |
2056 by (unfold_locales, simp) |
1034 hence th_d: "(Th ?th', x) \<in> ?A" by simp |
2057 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
1035 from RAG_target_th [OF this] |
|
1036 obtain cs' where eq_x: "x = Cs cs'" by auto |
|
1037 with th_d have "(Th ?th', Cs cs') \<in> ?A" by simp |
|
1038 hence wt_th': "waiting s ?th' cs'" |
|
1039 unfolding s_RAG_def s_waiting_def cs_waiting_def wq_def by simp |
|
1040 hence "cs' = cs" |
|
1041 proof(rule vt_s.waiting_unique) |
|
1042 from eq_wq vt_s.wq_distinct[of cs] |
|
1043 show "waiting s ?th' cs" |
|
1044 apply (unfold s_waiting_def wq_def, auto) |
|
1045 proof - |
|
1046 assume hd_in: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest" |
|
1047 and eq_wq: "wq_fun (schs s) cs = th # rest" |
|
1048 have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []" |
|
1049 proof(rule someI2) |
|
1050 from vt_s.wq_distinct[of cs] and eq_wq |
|
1051 show "distinct rest \<and> set rest = set rest" unfolding wq_def by auto |
|
1052 next |
|
1053 fix x assume "distinct x \<and> set x = set rest" |
|
1054 with False show "x \<noteq> []" by auto |
|
1055 qed |
|
1056 hence "hd (SOME q. distinct q \<and> set q = set rest) \<in> |
|
1057 set (SOME q. distinct q \<and> set q = set rest)" by auto |
|
1058 moreover have "\<dots> = set rest" |
|
1059 proof(rule someI2) |
|
1060 from vt_s.wq_distinct[of cs] and eq_wq |
|
1061 show "distinct rest \<and> set rest = set rest" unfolding wq_def by auto |
|
1062 next |
|
1063 show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto |
|
1064 qed |
|
1065 moreover note hd_in |
|
1066 ultimately show "hd (SOME q. distinct q \<and> set q = set rest) = th" by auto |
|
1067 next |
|
1068 assume hd_in: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest" |
|
1069 and eq_wq: "wq s cs = hd (SOME q. distinct q \<and> set q = set rest) # rest" |
|
1070 have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []" |
|
1071 proof(rule someI2) |
|
1072 from vt_s.wq_distinct[of cs] and eq_wq |
|
1073 show "distinct rest \<and> set rest = set rest" by auto |
|
1074 next |
|
1075 fix x assume "distinct x \<and> set x = set rest" |
|
1076 with False show "x \<noteq> []" by auto |
|
1077 qed |
|
1078 hence "hd (SOME q. distinct q \<and> set q = set rest) \<in> |
|
1079 set (SOME q. distinct q \<and> set q = set rest)" by auto |
|
1080 moreover have "\<dots> = set rest" |
|
1081 proof(rule someI2) |
|
1082 from vt_s.wq_distinct[of cs] and eq_wq |
|
1083 show "distinct rest \<and> set rest = set rest" by auto |
|
1084 next |
|
1085 show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto |
|
1086 qed |
|
1087 moreover note hd_in |
|
1088 ultimately show False by auto |
|
1089 qed |
|
1090 qed |
|
1091 with th'_e eq_x have "(Th ?th', Cs cs) \<in> ?E" by simp |
|
1092 with False |
|
1093 show "False" by (auto simp: next_th_def eq_wq) |
|
1094 qed |
|
1095 with acyclic_insert[symmetric] and ac |
|
1096 and eq_de eq_D show ?thesis by auto |
|
1097 next |
|
1098 case True |
|
1099 with eq_wq |
|
1100 have eq_D: "?D = {}" |
|
1101 by (unfold next_th_def, auto) |
|
1102 with eq_de ac |
|
1103 show ?thesis by auto |
|
1104 qed |
|
1105 qed |
|
1106 next |
2058 next |
1107 case (P th cs) |
2059 case (P th cs) |
1108 from P vt stp have vtt: "vt (P th cs#s)" by auto |
2060 interpret vt: valid_trace_p s e th cs using P |
1109 from step_RAG_p [OF this] P |
2061 by (unfold_locales, simp) |
1110 have "RAG (e # s) = |
2062 show ?thesis |
1111 (if wq s cs = [] then RAG s \<union> {(Cs cs, Th th)} else |
|
1112 RAG s \<union> {(Th th, Cs cs)})" (is "?L = ?R") |
|
1113 by simp |
|
1114 moreover have "acyclic ?R" |
|
1115 proof(cases "wq s cs = []") |
2063 proof(cases "wq s cs = []") |
1116 case True |
2064 case True |
1117 hence eq_r: "?R = RAG s \<union> {(Cs cs, Th th)}" by simp |
2065 then interpret vt_h: valid_trace_p_h s e th cs |
1118 have "(Th th, Cs cs) \<notin> (RAG s)\<^sup>*" |
2066 by (unfold_locales, simp) |
1119 proof |
2067 show ?thesis using Cons by (simp add: vt_h.acylic_RAG_kept) |
1120 assume "(Th th, Cs cs) \<in> (RAG s)\<^sup>*" |
|
1121 hence "(Th th, Cs cs) \<in> (RAG s)\<^sup>+" by (simp add: rtrancl_eq_or_trancl) |
|
1122 from tranclD2 [OF this] |
|
1123 obtain x where "(x, Cs cs) \<in> RAG s" by auto |
|
1124 with True show False by (auto simp:s_RAG_def cs_waiting_def) |
|
1125 qed |
|
1126 with acyclic_insert ih eq_r show ?thesis by auto |
|
1127 next |
2068 next |
1128 case False |
2069 case False |
1129 hence eq_r: "?R = RAG s \<union> {(Th th, Cs cs)}" by simp |
2070 then interpret vt_w: valid_trace_p_w s e th cs |
1130 have "(Cs cs, Th th) \<notin> (RAG s)\<^sup>*" |
2071 by (unfold_locales, simp) |
1131 proof |
2072 show ?thesis using Cons by (simp add: vt_w.acylic_RAG_kept) |
1132 assume "(Cs cs, Th th) \<in> (RAG s)\<^sup>*" |
2073 qed |
1133 hence "(Cs cs, Th th) \<in> (RAG s)\<^sup>+" by (simp add: rtrancl_eq_or_trancl) |
2074 next |
1134 moreover from step_back_step [OF vtt] have "step s (P th cs)" . |
2075 case (V th cs) |
1135 ultimately show False |
2076 interpret vt: valid_trace_v s e th cs using V |
1136 proof - |
2077 by (unfold_locales, simp) |
1137 show " \<lbrakk>(Cs cs, Th th) \<in> (RAG s)\<^sup>+; step s (P th cs)\<rbrakk> \<Longrightarrow> False" |
2078 show ?thesis |
1138 by (ind_cases "step s (P th cs)", simp) |
2079 proof(cases "vt.rest = []") |
|
2080 case True |
|
2081 then interpret vt_e: valid_trace_v_e s e th cs |
|
2082 by (unfold_locales, simp) |
|
2083 show ?thesis by (simp add: Cons.hyps(2) vt_e.acylic_RAG_kept) |
|
2084 next |
|
2085 case False |
|
2086 then interpret vt_n: valid_trace_v_n s e th cs |
|
2087 by (unfold_locales, simp) |
|
2088 show ?thesis by (simp add: Cons.hyps(2) vt_n.acylic_RAG_kept) |
|
2089 qed |
|
2090 next |
|
2091 case (Set th prio) |
|
2092 interpret vt: valid_trace_set s e th prio using Set |
|
2093 by (unfold_locales, simp) |
|
2094 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
|
2095 qed |
|
2096 qed |
|
2097 |
|
2098 lemma wf_RAG: "wf (RAG s)" |
|
2099 proof(rule finite_acyclic_wf) |
|
2100 from finite_RAG show "finite (RAG s)" . |
|
2101 next |
|
2102 from acyclic_RAG show "acyclic (RAG s)" . |
|
2103 qed |
|
2104 |
|
2105 lemma sgv_wRAG: "single_valued (wRAG s)" |
|
2106 using waiting_unique |
|
2107 by (unfold single_valued_def wRAG_def, auto) |
|
2108 |
|
2109 lemma sgv_hRAG: "single_valued (hRAG s)" |
|
2110 using held_unique |
|
2111 by (unfold single_valued_def hRAG_def, auto) |
|
2112 |
|
2113 lemma sgv_tRAG: "single_valued (tRAG s)" |
|
2114 by (unfold tRAG_def, rule single_valued_relcomp, |
|
2115 insert sgv_wRAG sgv_hRAG, auto) |
|
2116 |
|
2117 lemma acyclic_tRAG: "acyclic (tRAG s)" |
|
2118 proof(unfold tRAG_def, rule acyclic_compose) |
|
2119 show "acyclic (RAG s)" using acyclic_RAG . |
|
2120 next |
|
2121 show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto |
|
2122 next |
|
2123 show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto |
|
2124 qed |
|
2125 |
|
2126 lemma unique_RAG: "\<lbrakk>(n, n1) \<in> RAG s; (n, n2) \<in> RAG s\<rbrakk> \<Longrightarrow> n1 = n2" |
|
2127 apply(unfold s_RAG_def, auto, fold waiting_eq holding_eq) |
|
2128 by(auto elim:waiting_unique held_unique) |
|
2129 |
|
2130 lemma sgv_RAG: "single_valued (RAG s)" |
|
2131 using unique_RAG by (auto simp:single_valued_def) |
|
2132 |
|
2133 lemma rtree_RAG: "rtree (RAG s)" |
|
2134 using sgv_RAG acyclic_RAG |
|
2135 by (unfold rtree_def rtree_axioms_def sgv_def, auto) |
|
2136 |
|
2137 end |
|
2138 |
|
2139 sublocale valid_trace < rtree_RAG: rtree "RAG s" |
|
2140 proof |
|
2141 show "single_valued (RAG s)" |
|
2142 apply (intro_locales) |
|
2143 by (unfold single_valued_def, |
|
2144 auto intro:unique_RAG) |
|
2145 |
|
2146 show "acyclic (RAG s)" |
|
2147 by (rule acyclic_RAG) |
|
2148 qed |
|
2149 |
|
2150 sublocale valid_trace < rtree_s: rtree "tRAG s" |
|
2151 proof(unfold_locales) |
|
2152 from sgv_tRAG show "single_valued (tRAG s)" . |
|
2153 next |
|
2154 from acyclic_tRAG show "acyclic (tRAG s)" . |
|
2155 qed |
|
2156 |
|
2157 sublocale valid_trace < fsbtRAGs : fsubtree "RAG s" |
|
2158 proof - |
|
2159 show "fsubtree (RAG s)" |
|
2160 proof(intro_locales) |
|
2161 show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] . |
|
2162 next |
|
2163 show "fsubtree_axioms (RAG s)" |
|
2164 proof(unfold fsubtree_axioms_def) |
|
2165 from wf_RAG show "wf (RAG s)" . |
|
2166 qed |
|
2167 qed |
|
2168 qed |
|
2169 |
|
2170 lemma tRAG_alt_def: |
|
2171 "tRAG s = {(Th th1, Th th2) | th1 th2. |
|
2172 \<exists> cs. (Th th1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th2) \<in> RAG s}" |
|
2173 by (auto simp:tRAG_def RAG_split wRAG_def hRAG_def) |
|
2174 |
|
2175 sublocale valid_trace < fsbttRAGs: fsubtree "tRAG s" |
|
2176 proof - |
|
2177 have "fsubtree (tRAG s)" |
|
2178 proof - |
|
2179 have "fbranch (tRAG s)" |
|
2180 proof(unfold tRAG_def, rule fbranch_compose) |
|
2181 show "fbranch (wRAG s)" |
|
2182 proof(rule finite_fbranchI) |
|
2183 from finite_RAG show "finite (wRAG s)" |
|
2184 by (unfold RAG_split, auto) |
1139 qed |
2185 qed |
1140 qed |
|
1141 with acyclic_insert ih eq_r show ?thesis by auto |
|
1142 qed |
|
1143 ultimately show ?thesis by simp |
|
1144 next |
2186 next |
1145 case (Set thread prio) |
2187 show "fbranch (hRAG s)" |
1146 with ih |
2188 proof(rule finite_fbranchI) |
1147 thm RAG_set_unchanged |
2189 from finite_RAG |
1148 show ?thesis by (simp add:RAG_set_unchanged) |
2190 show "finite (hRAG s)" by (unfold RAG_split, auto) |
1149 qed |
2191 qed |
1150 next |
2192 qed |
1151 case vt_nil |
2193 moreover have "wf (tRAG s)" |
1152 show "acyclic (RAG ([]::state))" |
2194 proof(rule wf_subset) |
1153 by (auto simp: s_RAG_def cs_waiting_def |
2195 show "wf (RAG s O RAG s)" using wf_RAG |
1154 cs_holding_def wq_def acyclic_def) |
2196 by (fold wf_comp_self, simp) |
1155 qed |
|
1156 |
|
1157 |
|
1158 lemma finite_RAG: |
|
1159 shows "finite (RAG s)" |
|
1160 proof - |
|
1161 from vt show ?thesis |
|
1162 proof(induct) |
|
1163 case (vt_cons s e) |
|
1164 interpret vt_s: valid_trace s using vt_cons(1) |
|
1165 by (unfold_locales, simp) |
|
1166 assume ih: "finite (RAG s)" |
|
1167 and stp: "step s e" |
|
1168 and vt: "vt s" |
|
1169 show ?case |
|
1170 proof(cases e) |
|
1171 case (Create th prio) |
|
1172 with ih |
|
1173 show ?thesis by (simp add:RAG_create_unchanged) |
|
1174 next |
2197 next |
1175 case (Exit th) |
2198 show "tRAG s \<subseteq> (RAG s O RAG s)" |
1176 with ih show ?thesis by (simp add:RAG_exit_unchanged) |
2199 by (unfold tRAG_alt_def, auto) |
1177 next |
2200 qed |
1178 case (V th cs) |
2201 ultimately show ?thesis |
1179 from V vt stp have vtt: "vt (V th cs#s)" by auto |
2202 by (unfold fsubtree_def fsubtree_axioms_def,auto) |
1180 from step_RAG_v [OF this] |
2203 qed |
1181 have eq_de: "RAG (e # s) = |
2204 from this[folded tRAG_def] show "fsubtree (tRAG s)" . |
1182 RAG s - {(Cs cs, Th th)} - {(Th th', Cs cs) |th'. next_th s th cs th'} \<union> |
2205 qed |
1183 {(Cs cs, Th th') |th'. next_th s th cs th'} |
2206 |
1184 " |
2207 |
1185 (is "?L = (?A - ?B - ?C) \<union> ?D") by (simp add:V) |
2208 context valid_trace |
1186 moreover from ih have ac: "finite (?A - ?B - ?C)" by simp |
2209 begin |
1187 moreover have "finite ?D" |
2210 |
1188 proof - |
2211 lemma finite_subtree_threads: |
1189 have "?D = {} \<or> (\<exists> a. ?D = {a})" |
2212 "finite {th'. Th th' \<in> subtree (RAG s) (Th th)}" (is "finite ?A") |
1190 by (unfold next_th_def, auto) |
2213 proof - |
1191 thus ?thesis |
2214 have "?A = the_thread ` {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}" |
1192 proof |
2215 by (auto, insert image_iff, fastforce) |
1193 assume h: "?D = {}" |
2216 moreover have "finite {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}" |
1194 show ?thesis by (unfold h, simp) |
2217 (is "finite ?B") |
1195 next |
2218 proof - |
1196 assume "\<exists> a. ?D = {a}" |
2219 have "?B = (subtree (RAG s) (Th th)) \<inter> {Th th' | th'. True}" |
1197 thus ?thesis |
2220 by auto |
1198 by (metis finite.simps) |
2221 moreover have "... \<subseteq> (subtree (RAG s) (Th th))" by auto |
1199 qed |
2222 moreover have "finite ..." by (simp add: fsbtRAGs.finite_subtree) |
1200 qed |
2223 ultimately show ?thesis by auto |
1201 ultimately show ?thesis by simp |
2224 qed |
1202 next |
2225 ultimately show ?thesis by auto |
1203 case (P th cs) |
2226 qed |
1204 from P vt stp have vtt: "vt (P th cs#s)" by auto |
2227 |
1205 from step_RAG_p [OF this] P |
2228 lemma le_cp: |
1206 have "RAG (e # s) = |
2229 shows "preced th s \<le> cp s th" |
1207 (if wq s cs = [] then RAG s \<union> {(Cs cs, Th th)} else |
2230 proof(unfold cp_alt_def, rule Max_ge) |
1208 RAG s \<union> {(Th th, Cs cs)})" (is "?L = ?R") |
2231 show "finite (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})" |
1209 by simp |
2232 by (simp add: finite_subtree_threads) |
1210 moreover have "finite ?R" |
2233 next |
1211 proof(cases "wq s cs = []") |
2234 show "preced th s \<in> the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)}" |
1212 case True |
2235 by (simp add: subtree_def the_preced_def) |
1213 hence eq_r: "?R = RAG s \<union> {(Cs cs, Th th)}" by simp |
2236 qed |
1214 with True and ih show ?thesis by auto |
2237 |
1215 next |
2238 lemma cp_le: |
1216 case False |
2239 assumes th_in: "th \<in> threads s" |
1217 hence "?R = RAG s \<union> {(Th th, Cs cs)}" by simp |
2240 shows "cp s th \<le> Max (the_preced s ` threads s)" |
1218 with False and ih show ?thesis by auto |
2241 proof(unfold cp_alt_def, rule Max_f_mono) |
1219 qed |
2242 show "finite (threads s)" by (simp add: finite_threads) |
1220 ultimately show ?thesis by auto |
2243 next |
1221 next |
2244 show " {th'. Th th' \<in> subtree (RAG s) (Th th)} \<noteq> {}" |
1222 case (Set thread prio) |
2245 using subtree_def by fastforce |
1223 with ih |
2246 next |
1224 show ?thesis by (simp add:RAG_set_unchanged) |
2247 show "{th'. Th th' \<in> subtree (RAG s) (Th th)} \<subseteq> threads s" |
1225 qed |
2248 using assms |
1226 next |
2249 by (smt Domain.DomainI dm_RAG_threads mem_Collect_eq |
1227 case vt_nil |
2250 node.inject(1) rtranclD subsetI subtree_def trancl_domain) |
1228 show "finite (RAG ([]::state))" |
2251 qed |
1229 by (auto simp: s_RAG_def cs_waiting_def |
2252 |
1230 cs_holding_def wq_def acyclic_def) |
2253 lemma max_cp_eq: |
1231 qed |
2254 shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)" |
1232 qed |
2255 (is "?L = ?R") |
1233 |
2256 proof - |
1234 text {* Several useful lemmas *} |
2257 have "?L \<le> ?R" |
1235 |
2258 proof(cases "threads s = {}") |
1236 lemma wf_dep_converse: |
2259 case False |
|
2260 show ?thesis |
|
2261 by (rule Max.boundedI, |
|
2262 insert cp_le, |
|
2263 auto simp:finite_threads False) |
|
2264 qed auto |
|
2265 moreover have "?R \<le> ?L" |
|
2266 by (rule Max_fg_mono, |
|
2267 simp add: finite_threads, |
|
2268 simp add: le_cp the_preced_def) |
|
2269 ultimately show ?thesis by auto |
|
2270 qed |
|
2271 |
|
2272 lemma wf_RAG_converse: |
1237 shows "wf ((RAG s)^-1)" |
2273 shows "wf ((RAG s)^-1)" |
1238 proof(rule finite_acyclic_wf_converse) |
2274 proof(rule finite_acyclic_wf_converse) |
1239 from finite_RAG |
2275 from finite_RAG |
1240 show "finite (RAG s)" . |
2276 show "finite (RAG s)" . |
1241 next |
2277 next |
1242 from acyclic_RAG |
2278 from acyclic_RAG |
1243 show "acyclic (RAG s)" . |
2279 show "acyclic (RAG s)" . |
1244 qed |
2280 qed |
1245 |
2281 |
1246 end |
|
1247 |
|
1248 lemma hd_np_in: "x \<in> set l \<Longrightarrow> hd l \<in> set l" |
|
1249 by (induct l, auto) |
|
1250 |
|
1251 lemma th_chasing: "(Th th, Cs cs) \<in> RAG (s::state) \<Longrightarrow> \<exists> th'. (Cs cs, Th th') \<in> RAG s" |
|
1252 by (auto simp:s_RAG_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in) |
|
1253 |
|
1254 context valid_trace |
|
1255 begin |
|
1256 |
|
1257 lemma wq_threads: |
|
1258 assumes h: "th \<in> set (wq s cs)" |
|
1259 shows "th \<in> threads s" |
|
1260 proof - |
|
1261 from vt and h show ?thesis |
|
1262 proof(induct arbitrary: th cs) |
|
1263 case (vt_cons s e) |
|
1264 interpret vt_s: valid_trace s |
|
1265 using vt_cons(1) by (unfold_locales, auto) |
|
1266 assume ih: "\<And>th cs. th \<in> set (wq s cs) \<Longrightarrow> th \<in> threads s" |
|
1267 and stp: "step s e" |
|
1268 and vt: "vt s" |
|
1269 and h: "th \<in> set (wq (e # s) cs)" |
|
1270 show ?case |
|
1271 proof(cases e) |
|
1272 case (Create th' prio) |
|
1273 with ih h show ?thesis |
|
1274 by (auto simp:wq_def Let_def) |
|
1275 next |
|
1276 case (Exit th') |
|
1277 with stp ih h show ?thesis |
|
1278 apply (auto simp:wq_def Let_def) |
|
1279 apply (ind_cases "step s (Exit th')") |
|
1280 apply (auto simp:runing_def readys_def s_holding_def s_waiting_def holdents_def |
|
1281 s_RAG_def s_holding_def cs_holding_def) |
|
1282 done |
|
1283 next |
|
1284 case (V th' cs') |
|
1285 show ?thesis |
|
1286 proof(cases "cs' = cs") |
|
1287 case False |
|
1288 with h |
|
1289 show ?thesis |
|
1290 apply(unfold wq_def V, auto simp:Let_def V split:prod.splits, fold wq_def) |
|
1291 by (drule_tac ih, simp) |
|
1292 next |
|
1293 case True |
|
1294 from h |
|
1295 show ?thesis |
|
1296 proof(unfold V wq_def) |
|
1297 assume th_in: "th \<in> set (wq_fun (schs (V th' cs' # s)) cs)" (is "th \<in> set ?l") |
|
1298 show "th \<in> threads (V th' cs' # s)" |
|
1299 proof(cases "cs = cs'") |
|
1300 case False |
|
1301 hence "?l = wq_fun (schs s) cs" by (simp add:Let_def) |
|
1302 with th_in have " th \<in> set (wq s cs)" |
|
1303 by (fold wq_def, simp) |
|
1304 from ih [OF this] show ?thesis by simp |
|
1305 next |
|
1306 case True |
|
1307 show ?thesis |
|
1308 proof(cases "wq_fun (schs s) cs'") |
|
1309 case Nil |
|
1310 with h V show ?thesis |
|
1311 apply (auto simp:wq_def Let_def split:if_splits) |
|
1312 by (fold wq_def, drule_tac ih, simp) |
|
1313 next |
|
1314 case (Cons a rest) |
|
1315 assume eq_wq: "wq_fun (schs s) cs' = a # rest" |
|
1316 with h V show ?thesis |
|
1317 apply (auto simp:Let_def wq_def split:if_splits) |
|
1318 proof - |
|
1319 assume th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)" |
|
1320 have "set (SOME q. distinct q \<and> set q = set rest) = set rest" |
|
1321 proof(rule someI2) |
|
1322 from vt_s.wq_distinct[of cs'] and eq_wq[folded wq_def] |
|
1323 show "distinct rest \<and> set rest = set rest" by auto |
|
1324 next |
|
1325 show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" |
|
1326 by auto |
|
1327 qed |
|
1328 with eq_wq th_in have "th \<in> set (wq_fun (schs s) cs')" by auto |
|
1329 from ih[OF this[folded wq_def]] show "th \<in> threads s" . |
|
1330 next |
|
1331 assume th_in: "th \<in> set (wq_fun (schs s) cs)" |
|
1332 from ih[OF this[folded wq_def]] |
|
1333 show "th \<in> threads s" . |
|
1334 qed |
|
1335 qed |
|
1336 qed |
|
1337 qed |
|
1338 qed |
|
1339 next |
|
1340 case (P th' cs') |
|
1341 from h stp |
|
1342 show ?thesis |
|
1343 apply (unfold P wq_def) |
|
1344 apply (auto simp:Let_def split:if_splits, fold wq_def) |
|
1345 apply (auto intro:ih) |
|
1346 apply(ind_cases "step s (P th' cs')") |
|
1347 by (unfold runing_def readys_def, auto) |
|
1348 next |
|
1349 case (Set thread prio) |
|
1350 with ih h show ?thesis |
|
1351 by (auto simp:wq_def Let_def) |
|
1352 qed |
|
1353 next |
|
1354 case vt_nil |
|
1355 thus ?case by (auto simp:wq_def) |
|
1356 qed |
|
1357 qed |
|
1358 |
|
1359 lemma range_in: "\<lbrakk>(Th th) \<in> Range (RAG (s::state))\<rbrakk> \<Longrightarrow> th \<in> threads s" |
|
1360 apply(unfold s_RAG_def cs_waiting_def cs_holding_def) |
|
1361 by (auto intro:wq_threads) |
|
1362 |
|
1363 lemma readys_v_eq: |
|
1364 assumes neq_th: "th \<noteq> thread" |
|
1365 and eq_wq: "wq s cs = thread#rest" |
|
1366 and not_in: "th \<notin> set rest" |
|
1367 shows "(th \<in> readys (V thread cs#s)) = (th \<in> readys s)" |
|
1368 proof - |
|
1369 from assms show ?thesis |
|
1370 apply (auto simp:readys_def) |
|
1371 apply(simp add:s_waiting_def[folded wq_def]) |
|
1372 apply (erule_tac x = csa in allE) |
|
1373 apply (simp add:s_waiting_def wq_def Let_def split:if_splits) |
|
1374 apply (case_tac "csa = cs", simp) |
|
1375 apply (erule_tac x = cs in allE) |
|
1376 apply(auto simp add: s_waiting_def[folded wq_def] Let_def split: list.splits) |
|
1377 apply(auto simp add: wq_def) |
|
1378 apply (auto simp:s_waiting_def wq_def Let_def split:list.splits) |
|
1379 proof - |
|
1380 assume th_nin: "th \<notin> set rest" |
|
1381 and th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)" |
|
1382 and eq_wq: "wq_fun (schs s) cs = thread # rest" |
|
1383 have "set (SOME q. distinct q \<and> set q = set rest) = set rest" |
|
1384 proof(rule someI2) |
|
1385 from wq_distinct[of cs, unfolded wq_def] and eq_wq[unfolded wq_def] |
|
1386 show "distinct rest \<and> set rest = set rest" by auto |
|
1387 next |
|
1388 show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto |
|
1389 qed |
|
1390 with th_nin th_in show False by auto |
|
1391 qed |
|
1392 qed |
|
1393 |
|
1394 text {* \noindent |
|
1395 The following lemmas shows that: starting from any node in @{text "RAG"}, |
|
1396 by chasing out-going edges, it is always possible to reach a node representing a ready |
|
1397 thread. In this lemma, it is the @{text "th'"}. |
|
1398 *} |
|
1399 |
|
1400 lemma chain_building: |
2282 lemma chain_building: |
1401 shows "node \<in> Domain (RAG s) \<longrightarrow> (\<exists> th'. th' \<in> readys s \<and> (node, Th th') \<in> (RAG s)^+)" |
2283 assumes "node \<in> Domain (RAG s)" |
1402 proof - |
2284 obtains th' where "th' \<in> readys s" "(node, Th th') \<in> (RAG s)^+" |
1403 from wf_dep_converse |
2285 proof - |
1404 have h: "wf ((RAG s)\<inverse>)" . |
2286 from assms have "node \<in> Range ((RAG s)^-1)" by auto |
1405 show ?thesis |
2287 from wf_base[OF wf_RAG_converse this] |
1406 proof(induct rule:wf_induct [OF h]) |
2288 obtain b where h_b: "(b, node) \<in> ((RAG s)\<inverse>)\<^sup>+" "\<forall>c. (c, b) \<notin> (RAG s)\<inverse>" by auto |
1407 fix x |
2289 obtain th' where eq_b: "b = Th th'" |
1408 assume ih [rule_format]: |
2290 proof(cases b) |
1409 "\<forall>y. (y, x) \<in> (RAG s)\<inverse> \<longrightarrow> |
2291 case (Cs cs) |
1410 y \<in> Domain (RAG s) \<longrightarrow> (\<exists>th'. th' \<in> readys s \<and> (y, Th th') \<in> (RAG s)\<^sup>+)" |
2292 from h_b(1)[unfolded trancl_converse] |
1411 show "x \<in> Domain (RAG s) \<longrightarrow> (\<exists>th'. th' \<in> readys s \<and> (x, Th th') \<in> (RAG s)\<^sup>+)" |
2293 have "(node, b) \<in> ((RAG s)\<^sup>+)" by auto |
1412 proof |
2294 from tranclE[OF this] |
1413 assume x_d: "x \<in> Domain (RAG s)" |
2295 obtain n where "(n, b) \<in> RAG s" by auto |
1414 show "\<exists>th'. th' \<in> readys s \<and> (x, Th th') \<in> (RAG s)\<^sup>+" |
2296 from this[unfolded Cs] |
1415 proof(cases x) |
2297 obtain th1 where "waiting s th1 cs" |
1416 case (Th th) |
2298 by (unfold s_RAG_def, fold waiting_eq, auto) |
1417 from x_d Th obtain cs where x_in: "(Th th, Cs cs) \<in> RAG s" by (auto simp:s_RAG_def) |
2299 from waiting_holding[OF this] |
1418 with Th have x_in_r: "(Cs cs, x) \<in> (RAG s)^-1" by simp |
2300 obtain th2 where "holding s th2 cs" . |
1419 from th_chasing [OF x_in] obtain th' where "(Cs cs, Th th') \<in> RAG s" by blast |
2301 hence "(Cs cs, Th th2) \<in> RAG s" |
1420 hence "Cs cs \<in> Domain (RAG s)" by auto |
2302 by (unfold s_RAG_def, fold holding_eq, auto) |
1421 from ih [OF x_in_r this] obtain th' |
2303 with h_b(2)[unfolded Cs, rule_format] |
1422 where th'_ready: " th' \<in> readys s" and cs_in: "(Cs cs, Th th') \<in> (RAG s)\<^sup>+" by auto |
2304 have False by auto |
1423 have "(x, Th th') \<in> (RAG s)\<^sup>+" using Th x_in cs_in by auto |
2305 thus ?thesis by auto |
1424 with th'_ready show ?thesis by auto |
2306 qed auto |
1425 next |
2307 have "th' \<in> readys s" |
1426 case (Cs cs) |
2308 proof - |
1427 from x_d Cs obtain th' where th'_d: "(Th th', x) \<in> (RAG s)^-1" by (auto simp:s_RAG_def) |
2309 from h_b(2)[unfolded eq_b] |
1428 show ?thesis |
2310 have "\<forall>cs. \<not> waiting s th' cs" |
1429 proof(cases "th' \<in> readys s") |
2311 by (unfold s_RAG_def, fold waiting_eq, auto) |
1430 case True |
2312 moreover have "th' \<in> threads s" |
1431 from True and th'_d show ?thesis by auto |
2313 proof(rule rg_RAG_threads) |
1432 next |
2314 from tranclD[OF h_b(1), unfolded eq_b] |
1433 case False |
2315 obtain z where "(z, Th th') \<in> (RAG s)" by auto |
1434 from th'_d and range_in have "th' \<in> threads s" by auto |
2316 thus "Th th' \<in> Range (RAG s)" by auto |
1435 with False have "Th th' \<in> Domain (RAG s)" |
2317 qed |
1436 by (auto simp:readys_def wq_def s_waiting_def s_RAG_def cs_waiting_def Domain_def) |
2318 ultimately show ?thesis by (auto simp:readys_def) |
1437 from ih [OF th'_d this] |
2319 qed |
1438 obtain th'' where |
2320 moreover have "(node, Th th') \<in> (RAG s)^+" |
1439 th''_r: "th'' \<in> readys s" and |
2321 using h_b(1)[unfolded trancl_converse] eq_b by auto |
1440 th''_in: "(Th th', Th th'') \<in> (RAG s)\<^sup>+" by auto |
2322 ultimately show ?thesis using that by metis |
1441 from th'_d and th''_in |
|
1442 have "(x, Th th'') \<in> (RAG s)\<^sup>+" by auto |
|
1443 with th''_r show ?thesis by auto |
|
1444 qed |
|
1445 qed |
|
1446 qed |
|
1447 qed |
|
1448 qed |
2323 qed |
1449 |
2324 |
1450 text {* \noindent |
2325 text {* \noindent |
1451 The following is just an instance of @{text "chain_building"}. |
2326 The following is just an instance of @{text "chain_building"}. |
1452 *} |
2327 *} |
1655 by (unfold count_def, auto) |
2354 by (unfold count_def, auto) |
1656 |
2355 |
1657 lemma count_rec3 [simp]: |
2356 lemma count_rec3 [simp]: |
1658 shows "count Q [] = 0" |
2357 shows "count Q [] = 0" |
1659 by (unfold count_def, auto) |
2358 by (unfold count_def, auto) |
1660 |
2359 |
|
2360 lemma cntP_simp1[simp]: |
|
2361 "cntP (P th cs'#s) th = cntP s th + 1" |
|
2362 by (unfold cntP_def, simp) |
|
2363 |
|
2364 lemma cntP_simp2[simp]: |
|
2365 assumes "th' \<noteq> th" |
|
2366 shows "cntP (P th cs'#s) th' = cntP s th'" |
|
2367 using assms |
|
2368 by (unfold cntP_def, simp) |
|
2369 |
|
2370 lemma cntP_simp3[simp]: |
|
2371 assumes "\<not> isP e" |
|
2372 shows "cntP (e#s) th' = cntP s th'" |
|
2373 using assms |
|
2374 by (unfold cntP_def, cases e, simp+) |
|
2375 |
|
2376 lemma cntV_simp1[simp]: |
|
2377 "cntV (V th cs'#s) th = cntV s th + 1" |
|
2378 by (unfold cntV_def, simp) |
|
2379 |
|
2380 lemma cntV_simp2[simp]: |
|
2381 assumes "th' \<noteq> th" |
|
2382 shows "cntV (V th cs'#s) th' = cntV s th'" |
|
2383 using assms |
|
2384 by (unfold cntV_def, simp) |
|
2385 |
|
2386 lemma cntV_simp3[simp]: |
|
2387 assumes "\<not> isV e" |
|
2388 shows "cntV (e#s) th' = cntV s th'" |
|
2389 using assms |
|
2390 by (unfold cntV_def, cases e, simp+) |
|
2391 |
1661 lemma cntP_diff_inv: |
2392 lemma cntP_diff_inv: |
1662 assumes "cntP (e#s) th \<noteq> cntP s th" |
2393 assumes "cntP (e#s) th \<noteq> cntP s th" |
1663 shows "isP e \<and> actor e = th" |
2394 shows "isP e \<and> actor e = th" |
1664 proof(cases e) |
2395 proof(cases e) |
1665 case (P th' pty) |
2396 case (P th' pty) |
1666 show ?thesis |
2397 show ?thesis |
1667 by (cases "(\<lambda>e. \<exists>cs. e = P th cs) (P th' pty)", |
2398 by (cases "(\<lambda>e. \<exists>cs. e = P th cs) (P th' pty)", |
1668 insert assms P, auto simp:cntP_def) |
2399 insert assms P, auto simp:cntP_def) |
1669 qed (insert assms, auto simp:cntP_def) |
2400 qed (insert assms, auto simp:cntP_def) |
1670 |
2401 |
1671 lemma isP_E: |
|
1672 assumes "isP e" |
|
1673 obtains cs where "e = P (actor e) cs" |
|
1674 using assms by (cases e, auto) |
|
1675 |
|
1676 lemma isV_E: |
|
1677 assumes "isV e" |
|
1678 obtains cs where "e = V (actor e) cs" |
|
1679 using assms by (cases e, auto) (* ccc *) |
|
1680 |
|
1681 lemma cntV_diff_inv: |
2402 lemma cntV_diff_inv: |
1682 assumes "cntV (e#s) th \<noteq> cntV s th" |
2403 assumes "cntV (e#s) th \<noteq> cntV s th" |
1683 shows "isV e \<and> actor e = th" |
2404 shows "isV e \<and> actor e = th" |
1684 proof(cases e) |
2405 proof(cases e) |
1685 case (V th' pty) |
2406 case (V th' pty) |
1686 show ?thesis |
2407 show ?thesis |
1687 by (cases "(\<lambda>e. \<exists>cs. e = V th cs) (V th' pty)", |
2408 by (cases "(\<lambda>e. \<exists>cs. e = V th cs) (V th' pty)", |
1688 insert assms V, auto simp:cntV_def) |
2409 insert assms V, auto simp:cntV_def) |
1689 qed (insert assms, auto simp:cntV_def) |
2410 qed (insert assms, auto simp:cntV_def) |
1690 |
2411 |
|
2412 lemma children_RAG_alt_def: |
|
2413 "children (RAG (s::state)) (Th th) = Cs ` {cs. holding s th cs}" |
|
2414 by (unfold s_RAG_def, auto simp:children_def holding_eq) |
|
2415 |
|
2416 lemma holdents_alt_def: |
|
2417 "holdents s th = the_cs ` (children (RAG (s::state)) (Th th))" |
|
2418 by (unfold children_RAG_alt_def holdents_def, simp add: image_image) |
|
2419 |
|
2420 lemma cntCS_alt_def: |
|
2421 "cntCS s th = card (children (RAG s) (Th th))" |
|
2422 apply (unfold children_RAG_alt_def cntCS_def holdents_def) |
|
2423 by (rule card_image[symmetric], auto simp:inj_on_def) |
|
2424 |
1691 context valid_trace |
2425 context valid_trace |
1692 begin |
2426 begin |
1693 |
2427 |
1694 text {* (* ddd *) \noindent |
2428 lemma finite_holdents: "finite (holdents s th)" |
1695 The relationship between @{text "cntP"}, @{text "cntV"} and @{text "cntCS"} |
2429 by (unfold holdents_alt_def, insert fsbtRAGs.finite_children, auto) |
1696 of one particular thread. |
2430 |
1697 *} |
2431 end |
1698 |
2432 |
1699 lemma cnp_cnv_cncs: |
2433 context valid_trace_p_w |
1700 shows "cntP s th = cntV s th + (if (th \<in> readys s \<or> th \<notin> threads s) |
2434 begin |
1701 then cntCS s th else cntCS s th + 1)" |
2435 |
1702 proof - |
2436 lemma holding_s_holder: "holding s holder cs" |
1703 from vt show ?thesis |
2437 by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto) |
1704 proof(induct arbitrary:th) |
2438 |
1705 case (vt_cons s e) |
2439 lemma holding_es_holder: "holding (e#s) holder cs" |
1706 interpret vt_s: valid_trace s using vt_cons(1) by (unfold_locales, simp) |
2440 by (unfold s_holding_def, fold wq_def, unfold wq_es_cs wq_s_cs, auto) |
1707 assume vt: "vt s" |
2441 |
1708 and ih: "\<And>th. cntP s th = cntV s th + |
2442 lemma holdents_es: |
1709 (if (th \<in> readys s \<or> th \<notin> threads s) then cntCS s th else cntCS s th + 1)" |
2443 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
1710 and stp: "step s e" |
2444 proof - |
1711 from stp show ?case |
2445 { fix cs' |
1712 proof(cases) |
2446 assume "cs' \<in> ?L" |
1713 case (thread_create thread prio) |
2447 hence h: "holding (e#s) th' cs'" by (auto simp:holdents_def) |
1714 assume eq_e: "e = Create thread prio" |
2448 have "holding s th' cs'" |
1715 and not_in: "thread \<notin> threads s" |
2449 proof(cases "cs' = cs") |
|
2450 case True |
|
2451 from held_unique[OF h[unfolded True] holding_es_holder] |
|
2452 have "th' = holder" . |
|
2453 thus ?thesis |
|
2454 by (unfold True holdents_def, insert holding_s_holder, simp) |
|
2455 next |
|
2456 case False |
|
2457 hence "wq (e#s) cs' = wq s cs'" by simp |
|
2458 from h[unfolded s_holding_def, folded wq_def, unfolded this] |
1716 show ?thesis |
2459 show ?thesis |
1717 proof - |
2460 by (unfold s_holding_def, fold wq_def, auto) |
1718 { fix cs |
2461 qed |
1719 assume "thread \<in> set (wq s cs)" |
2462 hence "cs' \<in> ?R" by (auto simp:holdents_def) |
1720 from vt_s.wq_threads [OF this] have "thread \<in> threads s" . |
2463 } moreover { |
1721 with not_in have "False" by simp |
2464 fix cs' |
1722 } with eq_e have eq_readys: "readys (e#s) = readys s \<union> {thread}" |
2465 assume "cs' \<in> ?R" |
1723 by (auto simp:readys_def threads.simps s_waiting_def |
2466 hence h: "holding s th' cs'" by (auto simp:holdents_def) |
1724 wq_def cs_waiting_def Let_def) |
2467 have "holding (e#s) th' cs'" |
1725 from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def) |
2468 proof(cases "cs' = cs") |
1726 from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def) |
2469 case True |
1727 have eq_cncs: "cntCS (e#s) th = cntCS s th" |
2470 from held_unique[OF h[unfolded True] holding_s_holder] |
1728 unfolding cntCS_def holdents_test |
2471 have "th' = holder" . |
1729 by (simp add:RAG_create_unchanged eq_e) |
2472 thus ?thesis |
1730 { assume "th \<noteq> thread" |
2473 by (unfold True holdents_def, insert holding_es_holder, simp) |
1731 with eq_readys eq_e |
2474 next |
1732 have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) = |
2475 case False |
1733 (th \<in> readys (s) \<or> th \<notin> threads (s))" |
2476 hence "wq s cs' = wq (e#s) cs'" by simp |
1734 by (simp add:threads.simps) |
2477 from h[unfolded s_holding_def, folded wq_def, unfolded this] |
1735 with eq_cnp eq_cnv eq_cncs ih not_in |
2478 show ?thesis |
1736 have ?thesis by simp |
2479 by (unfold s_holding_def, fold wq_def, auto) |
1737 } moreover { |
2480 qed |
1738 assume eq_th: "th = thread" |
2481 hence "cs' \<in> ?L" by (auto simp:holdents_def) |
1739 with not_in ih have " cntP s th = cntV s th + cntCS s th" by simp |
2482 } ultimately show ?thesis by auto |
1740 moreover from eq_th and eq_readys have "th \<in> readys (e#s)" by simp |
2483 qed |
1741 moreover note eq_cnp eq_cnv eq_cncs |
2484 |
1742 ultimately have ?thesis by auto |
2485 lemma cntCS_es_th[simp]: "cntCS (e#s) th' = cntCS s th'" |
1743 } ultimately show ?thesis by blast |
2486 by (unfold cntCS_def holdents_es, simp) |
|
2487 |
|
2488 lemma th_not_ready_es: |
|
2489 shows "th \<notin> readys (e#s)" |
|
2490 using waiting_es_th_cs |
|
2491 by (unfold readys_def, auto) |
|
2492 |
|
2493 end |
|
2494 |
|
2495 context valid_trace_p_h |
|
2496 begin |
|
2497 |
|
2498 lemma th_not_waiting': |
|
2499 "\<not> waiting (e#s) th cs'" |
|
2500 proof(cases "cs' = cs") |
|
2501 case True |
|
2502 show ?thesis |
|
2503 by (unfold True s_waiting_def, fold wq_def, unfold wq_es_cs', auto) |
|
2504 next |
|
2505 case False |
|
2506 from th_not_waiting[of cs', unfolded s_waiting_def, folded wq_def] |
|
2507 show ?thesis |
|
2508 by (unfold s_waiting_def, fold wq_def, insert False, simp) |
|
2509 qed |
|
2510 |
|
2511 lemma ready_th_es: |
|
2512 shows "th \<in> readys (e#s)" |
|
2513 using th_not_waiting' |
|
2514 by (unfold readys_def, insert live_th_es, auto) |
|
2515 |
|
2516 lemma holdents_es_th: |
|
2517 "holdents (e#s) th = (holdents s th) \<union> {cs}" (is "?L = ?R") |
|
2518 proof - |
|
2519 { fix cs' |
|
2520 assume "cs' \<in> ?L" |
|
2521 hence "holding (e#s) th cs'" |
|
2522 by (unfold holdents_def, auto) |
|
2523 hence "cs' \<in> ?R" |
|
2524 by (cases rule:holding_esE, auto simp:holdents_def) |
|
2525 } moreover { |
|
2526 fix cs' |
|
2527 assume "cs' \<in> ?R" |
|
2528 hence "holding s th cs' \<or> cs' = cs" |
|
2529 by (auto simp:holdents_def) |
|
2530 hence "cs' \<in> ?L" |
|
2531 proof |
|
2532 assume "holding s th cs'" |
|
2533 from holding_kept[OF this] |
|
2534 show ?thesis by (auto simp:holdents_def) |
|
2535 next |
|
2536 assume "cs' = cs" |
|
2537 thus ?thesis using holding_es_th_cs |
|
2538 by (unfold holdents_def, auto) |
|
2539 qed |
|
2540 } ultimately show ?thesis by auto |
|
2541 qed |
|
2542 |
|
2543 lemma cntCS_es_th: "cntCS (e#s) th = cntCS s th + 1" |
|
2544 proof - |
|
2545 have "card (holdents s th \<union> {cs}) = card (holdents s th) + 1" |
|
2546 proof(subst card_Un_disjoint) |
|
2547 show "holdents s th \<inter> {cs} = {}" |
|
2548 using not_holding_s_th_cs by (auto simp:holdents_def) |
|
2549 qed (auto simp:finite_holdents) |
|
2550 thus ?thesis |
|
2551 by (unfold cntCS_def holdents_es_th, simp) |
|
2552 qed |
|
2553 |
|
2554 lemma no_holder: |
|
2555 "\<not> holding s th' cs" |
|
2556 proof |
|
2557 assume otherwise: "holding s th' cs" |
|
2558 from this[unfolded s_holding_def, folded wq_def, unfolded we] |
|
2559 show False by auto |
|
2560 qed |
|
2561 |
|
2562 lemma holdents_es_th': |
|
2563 assumes "th' \<noteq> th" |
|
2564 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
2565 proof - |
|
2566 { fix cs' |
|
2567 assume "cs' \<in> ?L" |
|
2568 hence h_e: "holding (e#s) th' cs'" by (auto simp:holdents_def) |
|
2569 have "cs' \<noteq> cs" |
|
2570 proof |
|
2571 assume "cs' = cs" |
|
2572 from held_unique[OF h_e[unfolded this] holding_es_th_cs] |
|
2573 have "th' = th" . |
|
2574 with assms show False by simp |
|
2575 qed |
|
2576 from h_e[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp[OF this]] |
|
2577 have "th' \<in> set (wq s cs') \<and> th' = hd (wq s cs')" . |
|
2578 hence "cs' \<in> ?R" |
|
2579 by (unfold holdents_def s_holding_def, fold wq_def, auto) |
|
2580 } moreover { |
|
2581 fix cs' |
|
2582 assume "cs' \<in> ?R" |
|
2583 hence "holding s th' cs'" by (auto simp:holdents_def) |
|
2584 from holding_kept[OF this] |
|
2585 have "holding (e # s) th' cs'" . |
|
2586 hence "cs' \<in> ?L" |
|
2587 by (unfold holdents_def, auto) |
|
2588 } ultimately show ?thesis by auto |
|
2589 qed |
|
2590 |
|
2591 lemma cntCS_es_th'[simp]: |
|
2592 assumes "th' \<noteq> th" |
|
2593 shows "cntCS (e#s) th' = cntCS s th'" |
|
2594 by (unfold cntCS_def holdents_es_th'[OF assms], simp) |
|
2595 |
|
2596 end |
|
2597 |
|
2598 context valid_trace_p |
|
2599 begin |
|
2600 |
|
2601 lemma readys_kept1: |
|
2602 assumes "th' \<noteq> th" |
|
2603 and "th' \<in> readys (e#s)" |
|
2604 shows "th' \<in> readys s" |
|
2605 proof - |
|
2606 { fix cs' |
|
2607 assume wait: "waiting s th' cs'" |
|
2608 have n_wait: "\<not> waiting (e#s) th' cs'" |
|
2609 using assms(2)[unfolded readys_def] by auto |
|
2610 have False |
|
2611 proof(cases "cs' = cs") |
|
2612 case False |
|
2613 with n_wait wait |
|
2614 show ?thesis |
|
2615 by (unfold s_waiting_def, fold wq_def, auto) |
|
2616 next |
|
2617 case True |
|
2618 show ?thesis |
|
2619 proof(cases "wq s cs = []") |
|
2620 case True |
|
2621 then interpret vt: valid_trace_p_h |
|
2622 by (unfold_locales, simp) |
|
2623 show ?thesis using n_wait wait waiting_kept by auto |
|
2624 next |
|
2625 case False |
|
2626 then interpret vt: valid_trace_p_w by (unfold_locales, simp) |
|
2627 show ?thesis using n_wait wait waiting_kept by blast |
1744 qed |
2628 qed |
|
2629 qed |
|
2630 } with assms(2) show ?thesis |
|
2631 by (unfold readys_def, auto) |
|
2632 qed |
|
2633 |
|
2634 lemma readys_kept2: |
|
2635 assumes "th' \<noteq> th" |
|
2636 and "th' \<in> readys s" |
|
2637 shows "th' \<in> readys (e#s)" |
|
2638 proof - |
|
2639 { fix cs' |
|
2640 assume wait: "waiting (e#s) th' cs'" |
|
2641 have n_wait: "\<not> waiting s th' cs'" |
|
2642 using assms(2)[unfolded readys_def] by auto |
|
2643 have False |
|
2644 proof(cases "cs' = cs") |
|
2645 case False |
|
2646 with n_wait wait |
|
2647 show ?thesis |
|
2648 by (unfold s_waiting_def, fold wq_def, auto) |
1745 next |
2649 next |
1746 case (thread_exit thread) |
2650 case True |
1747 assume eq_e: "e = Exit thread" |
2651 show ?thesis |
1748 and is_runing: "thread \<in> runing s" |
2652 proof(cases "wq s cs = []") |
1749 and no_hold: "holdents s thread = {}" |
2653 case True |
1750 from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def) |
2654 then interpret vt: valid_trace_p_h |
1751 from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def) |
2655 by (unfold_locales, simp) |
1752 have eq_cncs: "cntCS (e#s) th = cntCS s th" |
2656 show ?thesis using n_wait vt.waiting_esE wait by blast |
1753 unfolding cntCS_def holdents_test |
2657 next |
1754 by (simp add:RAG_exit_unchanged eq_e) |
2658 case False |
1755 { assume "th \<noteq> thread" |
2659 then interpret vt: valid_trace_p_w by (unfold_locales, simp) |
1756 with eq_e |
2660 show ?thesis using assms(1) n_wait vt.waiting_esE wait by auto |
1757 have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) = |
2661 qed |
1758 (th \<in> readys (s) \<or> th \<notin> threads (s))" |
2662 qed |
1759 apply (simp add:threads.simps readys_def) |
2663 } with assms(2) show ?thesis |
1760 apply (subst s_waiting_def) |
2664 by (unfold readys_def, auto) |
1761 apply (simp add:Let_def) |
2665 qed |
1762 apply (subst s_waiting_def, simp) |
2666 |
1763 done |
2667 lemma readys_simp [simp]: |
1764 with eq_cnp eq_cnv eq_cncs ih |
2668 assumes "th' \<noteq> th" |
1765 have ?thesis by simp |
2669 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
1766 } moreover { |
2670 using readys_kept1[OF assms] readys_kept2[OF assms] |
1767 assume eq_th: "th = thread" |
2671 by metis |
1768 with ih is_runing have " cntP s th = cntV s th + cntCS s th" |
2672 |
1769 by (simp add:runing_def) |
2673 lemma cnp_cnv_cncs_kept: (* ddd *) |
1770 moreover from eq_th eq_e have "th \<notin> threads (e#s)" |
2674 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
1771 by simp |
2675 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
1772 moreover note eq_cnp eq_cnv eq_cncs |
2676 proof(cases "th' = th") |
1773 ultimately have ?thesis by auto |
2677 case True |
1774 } ultimately show ?thesis by blast |
2678 note eq_th' = this |
|
2679 show ?thesis |
|
2680 proof(cases "wq s cs = []") |
|
2681 case True |
|
2682 then interpret vt: valid_trace_p_h by (unfold_locales, simp) |
|
2683 show ?thesis |
|
2684 using assms eq_th' is_p ready_th_s vt.cntCS_es_th vt.ready_th_es pvD_def by auto |
|
2685 next |
|
2686 case False |
|
2687 then interpret vt: valid_trace_p_w by (unfold_locales, simp) |
|
2688 show ?thesis |
|
2689 using add.commute add.left_commute assms eq_th' is_p live_th_s |
|
2690 ready_th_s vt.th_not_ready_es pvD_def |
|
2691 apply (auto) |
|
2692 by (fold is_p, simp) |
|
2693 qed |
|
2694 next |
|
2695 case False |
|
2696 note h_False = False |
|
2697 thus ?thesis |
|
2698 proof(cases "wq s cs = []") |
|
2699 case True |
|
2700 then interpret vt: valid_trace_p_h by (unfold_locales, simp) |
|
2701 show ?thesis using assms |
|
2702 by (insert True h_False pvD_def, auto split:if_splits,unfold is_p, auto) |
|
2703 next |
|
2704 case False |
|
2705 then interpret vt: valid_trace_p_w by (unfold_locales, simp) |
|
2706 show ?thesis using assms |
|
2707 by (insert False h_False pvD_def, auto split:if_splits,unfold is_p, auto) |
|
2708 qed |
|
2709 qed |
|
2710 |
|
2711 end |
|
2712 |
|
2713 |
|
2714 context valid_trace_v (* ccc *) |
|
2715 begin |
|
2716 |
|
2717 lemma holding_th_cs_s: |
|
2718 "holding s th cs" |
|
2719 by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto) |
|
2720 |
|
2721 lemma th_ready_s [simp]: "th \<in> readys s" |
|
2722 using runing_th_s |
|
2723 by (unfold runing_def readys_def, auto) |
|
2724 |
|
2725 lemma th_live_s [simp]: "th \<in> threads s" |
|
2726 using th_ready_s by (unfold readys_def, auto) |
|
2727 |
|
2728 lemma th_ready_es [simp]: "th \<in> readys (e#s)" |
|
2729 using runing_th_s neq_t_th |
|
2730 by (unfold is_v runing_def readys_def, auto) |
|
2731 |
|
2732 lemma th_live_es [simp]: "th \<in> threads (e#s)" |
|
2733 using th_ready_es by (unfold readys_def, auto) |
|
2734 |
|
2735 lemma pvD_th_s[simp]: "pvD s th = 0" |
|
2736 by (unfold pvD_def, simp) |
|
2737 |
|
2738 lemma pvD_th_es[simp]: "pvD (e#s) th = 0" |
|
2739 by (unfold pvD_def, simp) |
|
2740 |
|
2741 lemma cntCS_s_th [simp]: "cntCS s th > 0" |
|
2742 proof - |
|
2743 have "cs \<in> holdents s th" using holding_th_cs_s |
|
2744 by (unfold holdents_def, simp) |
|
2745 moreover have "finite (holdents s th)" using finite_holdents |
|
2746 by simp |
|
2747 ultimately show ?thesis |
|
2748 by (unfold cntCS_def, |
|
2749 auto intro!:card_gt_0_iff[symmetric, THEN iffD1]) |
|
2750 qed |
|
2751 |
|
2752 end |
|
2753 |
|
2754 context valid_trace_v_n |
|
2755 begin |
|
2756 |
|
2757 lemma not_ready_taker_s[simp]: |
|
2758 "taker \<notin> readys s" |
|
2759 using waiting_taker |
|
2760 by (unfold readys_def, auto) |
|
2761 |
|
2762 lemma taker_live_s [simp]: "taker \<in> threads s" |
|
2763 proof - |
|
2764 have "taker \<in> set wq'" by (simp add: eq_wq') |
|
2765 from th'_in_inv[OF this] |
|
2766 have "taker \<in> set rest" . |
|
2767 hence "taker \<in> set (wq s cs)" by (simp add: wq_s_cs) |
|
2768 thus ?thesis using wq_threads by auto |
|
2769 qed |
|
2770 |
|
2771 lemma taker_live_es [simp]: "taker \<in> threads (e#s)" |
|
2772 using taker_live_s threads_es by blast |
|
2773 |
|
2774 lemma taker_ready_es [simp]: |
|
2775 shows "taker \<in> readys (e#s)" |
|
2776 proof - |
|
2777 { fix cs' |
|
2778 assume "waiting (e#s) taker cs'" |
|
2779 hence False |
|
2780 proof(cases rule:waiting_esE) |
|
2781 case 1 |
|
2782 thus ?thesis using waiting_taker waiting_unique by auto |
|
2783 qed simp |
|
2784 } thus ?thesis by (unfold readys_def, auto) |
|
2785 qed |
|
2786 |
|
2787 lemma neq_taker_th: "taker \<noteq> th" |
|
2788 using th_not_waiting waiting_taker by blast |
|
2789 |
|
2790 lemma not_holding_taker_s_cs: |
|
2791 shows "\<not> holding s taker cs" |
|
2792 using holding_cs_eq_th neq_taker_th by auto |
|
2793 |
|
2794 lemma holdents_es_taker: |
|
2795 "holdents (e#s) taker = holdents s taker \<union> {cs}" (is "?L = ?R") |
|
2796 proof - |
|
2797 { fix cs' |
|
2798 assume "cs' \<in> ?L" |
|
2799 hence "holding (e#s) taker cs'" by (auto simp:holdents_def) |
|
2800 hence "cs' \<in> ?R" |
|
2801 proof(cases rule:holding_esE) |
|
2802 case 2 |
|
2803 thus ?thesis by (auto simp:holdents_def) |
|
2804 qed auto |
|
2805 } moreover { |
|
2806 fix cs' |
|
2807 assume "cs' \<in> ?R" |
|
2808 hence "holding s taker cs' \<or> cs' = cs" by (auto simp:holdents_def) |
|
2809 hence "cs' \<in> ?L" |
|
2810 proof |
|
2811 assume "holding s taker cs'" |
|
2812 hence "holding (e#s) taker cs'" |
|
2813 using holding_esI2 holding_taker by fastforce |
|
2814 thus ?thesis by (auto simp:holdents_def) |
1775 next |
2815 next |
1776 case (thread_P thread cs) |
2816 assume "cs' = cs" |
1777 assume eq_e: "e = P thread cs" |
2817 with holding_taker |
1778 and is_runing: "thread \<in> runing s" |
2818 show ?thesis by (auto simp:holdents_def) |
1779 and no_dep: "(Cs cs, Th thread) \<notin> (RAG s)\<^sup>+" |
2819 qed |
1780 from thread_P vt stp ih have vtp: "vt (P thread cs#s)" by auto |
2820 } ultimately show ?thesis by auto |
1781 then interpret vt_p: valid_trace "(P thread cs#s)" |
2821 qed |
1782 by (unfold_locales, simp) |
2822 |
|
2823 lemma cntCS_es_taker [simp]: "cntCS (e#s) taker = cntCS s taker + 1" |
|
2824 proof - |
|
2825 have "card (holdents s taker \<union> {cs}) = card (holdents s taker) + 1" |
|
2826 proof(subst card_Un_disjoint) |
|
2827 show "holdents s taker \<inter> {cs} = {}" |
|
2828 using not_holding_taker_s_cs by (auto simp:holdents_def) |
|
2829 qed (auto simp:finite_holdents) |
|
2830 thus ?thesis |
|
2831 by (unfold cntCS_def, insert holdents_es_taker, simp) |
|
2832 qed |
|
2833 |
|
2834 lemma pvD_taker_s[simp]: "pvD s taker = 1" |
|
2835 by (unfold pvD_def, simp) |
|
2836 |
|
2837 lemma pvD_taker_es[simp]: "pvD (e#s) taker = 0" |
|
2838 by (unfold pvD_def, simp) |
|
2839 |
|
2840 lemma pvD_th_s[simp]: "pvD s th = 0" |
|
2841 by (unfold pvD_def, simp) |
|
2842 |
|
2843 lemma pvD_th_es[simp]: "pvD (e#s) th = 0" |
|
2844 by (unfold pvD_def, simp) |
|
2845 |
|
2846 lemma holdents_es_th: |
|
2847 "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R") |
|
2848 proof - |
|
2849 { fix cs' |
|
2850 assume "cs' \<in> ?L" |
|
2851 hence "holding (e#s) th cs'" by (auto simp:holdents_def) |
|
2852 hence "cs' \<in> ?R" |
|
2853 proof(cases rule:holding_esE) |
|
2854 case 2 |
|
2855 thus ?thesis by (auto simp:holdents_def) |
|
2856 qed (insert neq_taker_th, auto) |
|
2857 } moreover { |
|
2858 fix cs' |
|
2859 assume "cs' \<in> ?R" |
|
2860 hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def) |
|
2861 from holding_esI2[OF this] |
|
2862 have "cs' \<in> ?L" by (auto simp:holdents_def) |
|
2863 } ultimately show ?thesis by auto |
|
2864 qed |
|
2865 |
|
2866 lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1" |
|
2867 proof - |
|
2868 have "card (holdents s th - {cs}) = card (holdents s th) - 1" |
|
2869 proof - |
|
2870 have "cs \<in> holdents s th" using holding_th_cs_s |
|
2871 by (auto simp:holdents_def) |
|
2872 moreover have "finite (holdents s th)" |
|
2873 by (simp add: finite_holdents) |
|
2874 ultimately show ?thesis by auto |
|
2875 qed |
|
2876 thus ?thesis by (unfold cntCS_def holdents_es_th) |
|
2877 qed |
|
2878 |
|
2879 lemma holdents_kept: |
|
2880 assumes "th' \<noteq> taker" |
|
2881 and "th' \<noteq> th" |
|
2882 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
2883 proof - |
|
2884 { fix cs' |
|
2885 assume h: "cs' \<in> ?L" |
|
2886 have "cs' \<in> ?R" |
|
2887 proof(cases "cs' = cs") |
|
2888 case False |
|
2889 hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp |
|
2890 from h have "holding (e#s) th' cs'" by (auto simp:holdents_def) |
|
2891 from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq] |
|
2892 show ?thesis |
|
2893 by (unfold holdents_def s_holding_def, fold wq_def, auto) |
|
2894 next |
|
2895 case True |
|
2896 from h[unfolded this] |
|
2897 have "holding (e#s) th' cs" by (auto simp:holdents_def) |
|
2898 from held_unique[OF this holding_taker] |
|
2899 have "th' = taker" . |
|
2900 with assms show ?thesis by auto |
|
2901 qed |
|
2902 } moreover { |
|
2903 fix cs' |
|
2904 assume h: "cs' \<in> ?R" |
|
2905 have "cs' \<in> ?L" |
|
2906 proof(cases "cs' = cs") |
|
2907 case False |
|
2908 hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp |
|
2909 from h have "holding s th' cs'" by (auto simp:holdents_def) |
|
2910 from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq] |
|
2911 show ?thesis |
|
2912 by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp) |
|
2913 next |
|
2914 case True |
|
2915 from h[unfolded this] |
|
2916 have "holding s th' cs" by (auto simp:holdents_def) |
|
2917 from held_unique[OF this holding_th_cs_s] |
|
2918 have "th' = th" . |
|
2919 with assms show ?thesis by auto |
|
2920 qed |
|
2921 } ultimately show ?thesis by auto |
|
2922 qed |
|
2923 |
|
2924 lemma cntCS_kept [simp]: |
|
2925 assumes "th' \<noteq> taker" |
|
2926 and "th' \<noteq> th" |
|
2927 shows "cntCS (e#s) th' = cntCS s th'" |
|
2928 by (unfold cntCS_def holdents_kept[OF assms], simp) |
|
2929 |
|
2930 lemma readys_kept1: |
|
2931 assumes "th' \<noteq> taker" |
|
2932 and "th' \<in> readys (e#s)" |
|
2933 shows "th' \<in> readys s" |
|
2934 proof - |
|
2935 { fix cs' |
|
2936 assume wait: "waiting s th' cs'" |
|
2937 have n_wait: "\<not> waiting (e#s) th' cs'" |
|
2938 using assms(2)[unfolded readys_def] by auto |
|
2939 have False |
|
2940 proof(cases "cs' = cs") |
|
2941 case False |
|
2942 with n_wait wait |
1783 show ?thesis |
2943 show ?thesis |
1784 proof - |
2944 by (unfold s_waiting_def, fold wq_def, auto) |
1785 { have hh: "\<And> A B C. (B = C) \<Longrightarrow> (A \<and> B) = (A \<and> C)" by blast |
|
1786 assume neq_th: "th \<noteq> thread" |
|
1787 with eq_e |
|
1788 have eq_readys: "(th \<in> readys (e#s)) = (th \<in> readys (s))" |
|
1789 apply (simp add:readys_def s_waiting_def wq_def Let_def) |
|
1790 apply (rule_tac hh) |
|
1791 apply (intro iffI allI, clarify) |
|
1792 apply (erule_tac x = csa in allE, auto) |
|
1793 apply (subgoal_tac "wq_fun (schs s) cs \<noteq> []", auto) |
|
1794 apply (erule_tac x = cs in allE, auto) |
|
1795 by (case_tac "(wq_fun (schs s) cs)", auto) |
|
1796 moreover from neq_th eq_e have "cntCS (e # s) th = cntCS s th" |
|
1797 apply (simp add:cntCS_def holdents_test) |
|
1798 by (unfold step_RAG_p [OF vtp], auto) |
|
1799 moreover from eq_e neq_th have "cntP (e # s) th = cntP s th" |
|
1800 by (simp add:cntP_def count_def) |
|
1801 moreover from eq_e neq_th have "cntV (e#s) th = cntV s th" |
|
1802 by (simp add:cntV_def count_def) |
|
1803 moreover from eq_e neq_th have "threads (e#s) = threads s" by simp |
|
1804 moreover note ih [of th] |
|
1805 ultimately have ?thesis by simp |
|
1806 } moreover { |
|
1807 assume eq_th: "th = thread" |
|
1808 have ?thesis |
|
1809 proof - |
|
1810 from eq_e eq_th have eq_cnp: "cntP (e # s) th = 1 + (cntP s th)" |
|
1811 by (simp add:cntP_def count_def) |
|
1812 from eq_e eq_th have eq_cnv: "cntV (e#s) th = cntV s th" |
|
1813 by (simp add:cntV_def count_def) |
|
1814 show ?thesis |
|
1815 proof (cases "wq s cs = []") |
|
1816 case True |
|
1817 with is_runing |
|
1818 have "th \<in> readys (e#s)" |
|
1819 apply (unfold eq_e wq_def, unfold readys_def s_RAG_def) |
|
1820 apply (simp add: wq_def[symmetric] runing_def eq_th s_waiting_def) |
|
1821 by (auto simp:readys_def wq_def Let_def s_waiting_def wq_def) |
|
1822 moreover have "cntCS (e # s) th = 1 + cntCS s th" |
|
1823 proof - |
|
1824 have "card {csa. csa = cs \<or> (Cs csa, Th thread) \<in> RAG s} = |
|
1825 Suc (card {cs. (Cs cs, Th thread) \<in> RAG s})" (is "card ?L = Suc (card ?R)") |
|
1826 proof - |
|
1827 have "?L = insert cs ?R" by auto |
|
1828 moreover have "card \<dots> = Suc (card (?R - {cs}))" |
|
1829 proof(rule card_insert) |
|
1830 from vt_s.finite_holding [of thread] |
|
1831 show " finite {cs. (Cs cs, Th thread) \<in> RAG s}" |
|
1832 by (unfold holdents_test, simp) |
|
1833 qed |
|
1834 moreover have "?R - {cs} = ?R" |
|
1835 proof - |
|
1836 have "cs \<notin> ?R" |
|
1837 proof |
|
1838 assume "cs \<in> {cs. (Cs cs, Th thread) \<in> RAG s}" |
|
1839 with no_dep show False by auto |
|
1840 qed |
|
1841 thus ?thesis by auto |
|
1842 qed |
|
1843 ultimately show ?thesis by auto |
|
1844 qed |
|
1845 thus ?thesis |
|
1846 apply (unfold eq_e eq_th cntCS_def) |
|
1847 apply (simp add: holdents_test) |
|
1848 by (unfold step_RAG_p [OF vtp], auto simp:True) |
|
1849 qed |
|
1850 moreover from is_runing have "th \<in> readys s" |
|
1851 by (simp add:runing_def eq_th) |
|
1852 moreover note eq_cnp eq_cnv ih [of th] |
|
1853 ultimately show ?thesis by auto |
|
1854 next |
|
1855 case False |
|
1856 have eq_wq: "wq (e#s) cs = wq s cs @ [th]" |
|
1857 by (unfold eq_th eq_e wq_def, auto simp:Let_def) |
|
1858 have "th \<notin> readys (e#s)" |
|
1859 proof |
|
1860 assume "th \<in> readys (e#s)" |
|
1861 hence "\<forall>cs. \<not> waiting (e # s) th cs" by (simp add:readys_def) |
|
1862 from this[rule_format, of cs] have " \<not> waiting (e # s) th cs" . |
|
1863 hence "th \<in> set (wq (e#s) cs) \<Longrightarrow> th = hd (wq (e#s) cs)" |
|
1864 by (simp add:s_waiting_def wq_def) |
|
1865 moreover from eq_wq have "th \<in> set (wq (e#s) cs)" by auto |
|
1866 ultimately have "th = hd (wq (e#s) cs)" by blast |
|
1867 with eq_wq have "th = hd (wq s cs @ [th])" by simp |
|
1868 hence "th = hd (wq s cs)" using False by auto |
|
1869 with False eq_wq vt_p.wq_distinct [of cs] |
|
1870 show False by (fold eq_e, auto) |
|
1871 qed |
|
1872 moreover from is_runing have "th \<in> threads (e#s)" |
|
1873 by (unfold eq_e, auto simp:runing_def readys_def eq_th) |
|
1874 moreover have "cntCS (e # s) th = cntCS s th" |
|
1875 apply (unfold cntCS_def holdents_test eq_e step_RAG_p[OF vtp]) |
|
1876 by (auto simp:False) |
|
1877 moreover note eq_cnp eq_cnv ih[of th] |
|
1878 moreover from is_runing have "th \<in> readys s" |
|
1879 by (simp add:runing_def eq_th) |
|
1880 ultimately show ?thesis by auto |
|
1881 qed |
|
1882 qed |
|
1883 } ultimately show ?thesis by blast |
|
1884 qed |
|
1885 next |
2945 next |
1886 case (thread_V thread cs) |
2946 case True |
1887 from assms vt stp ih thread_V have vtv: "vt (V thread cs # s)" by auto |
2947 have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)" |
1888 then interpret vt_v: valid_trace "(V thread cs # s)" by (unfold_locales, simp) |
2948 using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] . |
1889 assume eq_e: "e = V thread cs" |
2949 moreover have "\<not> (th' \<in> set rest \<and> th' \<noteq> hd (taker # rest'))" |
1890 and is_runing: "thread \<in> runing s" |
2950 using n_wait[unfolded True s_waiting_def, folded wq_def, |
1891 and hold: "holding s thread cs" |
2951 unfolded wq_es_cs set_wq', unfolded eq_wq'] . |
1892 from hold obtain rest |
2952 ultimately have "th' = taker" by auto |
1893 where eq_wq: "wq s cs = thread # rest" |
2953 with assms(1) |
1894 by (case_tac "wq s cs", auto simp: wq_def s_holding_def) |
2954 show ?thesis by simp |
1895 have eq_threads: "threads (e#s) = threads s" by (simp add: eq_e) |
2955 qed |
1896 have eq_set: "set (SOME q. distinct q \<and> set q = set rest) = set rest" |
2956 } with assms(2) show ?thesis |
1897 proof(rule someI2) |
2957 by (unfold readys_def, auto) |
1898 from vt_v.wq_distinct[of cs] and eq_wq |
2958 qed |
1899 show "distinct rest \<and> set rest = set rest" |
2959 |
1900 by (metis distinct.simps(2) vt_s.wq_distinct) |
2960 lemma readys_kept2: |
1901 next |
2961 assumes "th' \<noteq> taker" |
1902 show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" |
2962 and "th' \<in> readys s" |
1903 by auto |
2963 shows "th' \<in> readys (e#s)" |
1904 qed |
2964 proof - |
|
2965 { fix cs' |
|
2966 assume wait: "waiting (e#s) th' cs'" |
|
2967 have n_wait: "\<not> waiting s th' cs'" |
|
2968 using assms(2)[unfolded readys_def] by auto |
|
2969 have False |
|
2970 proof(cases "cs' = cs") |
|
2971 case False |
|
2972 with n_wait wait |
|
2973 show ?thesis |
|
2974 by (unfold s_waiting_def, fold wq_def, auto) |
|
2975 next |
|
2976 case True |
|
2977 have "th' \<in> set rest \<and> th' \<noteq> hd (taker # rest')" |
|
2978 using wait [unfolded True s_waiting_def, folded wq_def, |
|
2979 unfolded wq_es_cs set_wq', unfolded eq_wq'] . |
|
2980 moreover have "\<not> (th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest))" |
|
2981 using n_wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] . |
|
2982 ultimately have "th' = taker" by auto |
|
2983 with assms(1) |
|
2984 show ?thesis by simp |
|
2985 qed |
|
2986 } with assms(2) show ?thesis |
|
2987 by (unfold readys_def, auto) |
|
2988 qed |
|
2989 |
|
2990 lemma readys_simp [simp]: |
|
2991 assumes "th' \<noteq> taker" |
|
2992 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
|
2993 using readys_kept1[OF assms] readys_kept2[OF assms] |
|
2994 by metis |
|
2995 |
|
2996 lemma cnp_cnv_cncs_kept: |
|
2997 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
2998 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
2999 proof - |
|
3000 { assume eq_th': "th' = taker" |
|
3001 have ?thesis |
|
3002 apply (unfold eq_th' pvD_taker_es cntCS_es_taker) |
|
3003 by (insert neq_taker_th assms[unfolded eq_th'], unfold is_v, simp) |
|
3004 } moreover { |
|
3005 assume eq_th': "th' = th" |
|
3006 have ?thesis |
|
3007 apply (unfold eq_th' pvD_th_es cntCS_es_th) |
|
3008 by (insert assms[unfolded eq_th'], unfold is_v, simp) |
|
3009 } moreover { |
|
3010 assume h: "th' \<noteq> taker" "th' \<noteq> th" |
|
3011 have ?thesis using assms |
|
3012 apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp) |
|
3013 by (fold is_v, unfold pvD_def, simp) |
|
3014 } ultimately show ?thesis by metis |
|
3015 qed |
|
3016 |
|
3017 end |
|
3018 |
|
3019 context valid_trace_v_e |
|
3020 begin |
|
3021 |
|
3022 lemma holdents_es_th: |
|
3023 "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R") |
|
3024 proof - |
|
3025 { fix cs' |
|
3026 assume "cs' \<in> ?L" |
|
3027 hence "holding (e#s) th cs'" by (auto simp:holdents_def) |
|
3028 hence "cs' \<in> ?R" |
|
3029 proof(cases rule:holding_esE) |
|
3030 case 1 |
|
3031 thus ?thesis by (auto simp:holdents_def) |
|
3032 qed |
|
3033 } moreover { |
|
3034 fix cs' |
|
3035 assume "cs' \<in> ?R" |
|
3036 hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def) |
|
3037 from holding_esI2[OF this] |
|
3038 have "cs' \<in> ?L" by (auto simp:holdents_def) |
|
3039 } ultimately show ?thesis by auto |
|
3040 qed |
|
3041 |
|
3042 lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1" |
|
3043 proof - |
|
3044 have "card (holdents s th - {cs}) = card (holdents s th) - 1" |
|
3045 proof - |
|
3046 have "cs \<in> holdents s th" using holding_th_cs_s |
|
3047 by (auto simp:holdents_def) |
|
3048 moreover have "finite (holdents s th)" |
|
3049 by (simp add: finite_holdents) |
|
3050 ultimately show ?thesis by auto |
|
3051 qed |
|
3052 thus ?thesis by (unfold cntCS_def holdents_es_th) |
|
3053 qed |
|
3054 |
|
3055 lemma holdents_kept: |
|
3056 assumes "th' \<noteq> th" |
|
3057 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
3058 proof - |
|
3059 { fix cs' |
|
3060 assume h: "cs' \<in> ?L" |
|
3061 have "cs' \<in> ?R" |
|
3062 proof(cases "cs' = cs") |
|
3063 case False |
|
3064 hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp |
|
3065 from h have "holding (e#s) th' cs'" by (auto simp:holdents_def) |
|
3066 from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq] |
1905 show ?thesis |
3067 show ?thesis |
1906 proof - |
3068 by (unfold holdents_def s_holding_def, fold wq_def, auto) |
1907 { assume eq_th: "th = thread" |
|
1908 from eq_th have eq_cnp: "cntP (e # s) th = cntP s th" |
|
1909 by (unfold eq_e, simp add:cntP_def count_def) |
|
1910 moreover from eq_th have eq_cnv: "cntV (e#s) th = 1 + cntV s th" |
|
1911 by (unfold eq_e, simp add:cntV_def count_def) |
|
1912 moreover from cntCS_v_dec [OF vtv] |
|
1913 have "cntCS (e # s) thread + 1 = cntCS s thread" |
|
1914 by (simp add:eq_e) |
|
1915 moreover from is_runing have rd_before: "thread \<in> readys s" |
|
1916 by (unfold runing_def, simp) |
|
1917 moreover have "thread \<in> readys (e # s)" |
|
1918 proof - |
|
1919 from is_runing |
|
1920 have "thread \<in> threads (e#s)" |
|
1921 by (unfold eq_e, auto simp:runing_def readys_def) |
|
1922 moreover have "\<forall> cs1. \<not> waiting (e#s) thread cs1" |
|
1923 proof |
|
1924 fix cs1 |
|
1925 { assume eq_cs: "cs1 = cs" |
|
1926 have "\<not> waiting (e # s) thread cs1" |
|
1927 proof - |
|
1928 from eq_wq |
|
1929 have "thread \<notin> set (wq (e#s) cs1)" |
|
1930 apply(unfold eq_e wq_def eq_cs s_holding_def) |
|
1931 apply (auto simp:Let_def) |
|
1932 proof - |
|
1933 assume "thread \<in> set (SOME q. distinct q \<and> set q = set rest)" |
|
1934 with eq_set have "thread \<in> set rest" by simp |
|
1935 with vt_v.wq_distinct[of cs] |
|
1936 and eq_wq show False |
|
1937 by (metis distinct.simps(2) vt_s.wq_distinct) |
|
1938 qed |
|
1939 thus ?thesis by (simp add:wq_def s_waiting_def) |
|
1940 qed |
|
1941 } moreover { |
|
1942 assume neq_cs: "cs1 \<noteq> cs" |
|
1943 have "\<not> waiting (e # s) thread cs1" |
|
1944 proof - |
|
1945 from wq_v_neq [OF neq_cs[symmetric]] |
|
1946 have "wq (V thread cs # s) cs1 = wq s cs1" . |
|
1947 moreover have "\<not> waiting s thread cs1" |
|
1948 proof - |
|
1949 from runing_ready and is_runing |
|
1950 have "thread \<in> readys s" by auto |
|
1951 thus ?thesis by (simp add:readys_def) |
|
1952 qed |
|
1953 ultimately show ?thesis |
|
1954 by (auto simp:wq_def s_waiting_def eq_e) |
|
1955 qed |
|
1956 } ultimately show "\<not> waiting (e # s) thread cs1" by blast |
|
1957 qed |
|
1958 ultimately show ?thesis by (simp add:readys_def) |
|
1959 qed |
|
1960 moreover note eq_th ih |
|
1961 ultimately have ?thesis by auto |
|
1962 } moreover { |
|
1963 assume neq_th: "th \<noteq> thread" |
|
1964 from neq_th eq_e have eq_cnp: "cntP (e # s) th = cntP s th" |
|
1965 by (simp add:cntP_def count_def) |
|
1966 from neq_th eq_e have eq_cnv: "cntV (e # s) th = cntV s th" |
|
1967 by (simp add:cntV_def count_def) |
|
1968 have ?thesis |
|
1969 proof(cases "th \<in> set rest") |
|
1970 case False |
|
1971 have "(th \<in> readys (e # s)) = (th \<in> readys s)" |
|
1972 apply (insert step_back_vt[OF vtv]) |
|
1973 by (simp add: False eq_e eq_wq neq_th vt_s.readys_v_eq) |
|
1974 moreover have "cntCS (e#s) th = cntCS s th" |
|
1975 apply (insert neq_th, unfold eq_e cntCS_def holdents_test step_RAG_v[OF vtv], auto) |
|
1976 proof - |
|
1977 have "{csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs \<and> next_th s thread cs th} = |
|
1978 {cs. (Cs cs, Th th) \<in> RAG s}" |
|
1979 proof - |
|
1980 from False eq_wq |
|
1981 have " next_th s thread cs th \<Longrightarrow> (Cs cs, Th th) \<in> RAG s" |
|
1982 apply (unfold next_th_def, auto) |
|
1983 proof - |
|
1984 assume ne: "rest \<noteq> []" |
|
1985 and ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest" |
|
1986 and eq_wq: "wq s cs = thread # rest" |
|
1987 from eq_set ni have "hd (SOME q. distinct q \<and> set q = set rest) \<notin> |
|
1988 set (SOME q. distinct q \<and> set q = set rest) |
|
1989 " by simp |
|
1990 moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []" |
|
1991 proof(rule someI2) |
|
1992 from vt_s.wq_distinct[ of cs] and eq_wq |
|
1993 show "distinct rest \<and> set rest = set rest" by auto |
|
1994 next |
|
1995 fix x assume "distinct x \<and> set x = set rest" |
|
1996 with ne show "x \<noteq> []" by auto |
|
1997 qed |
|
1998 ultimately show |
|
1999 "(Cs cs, Th (hd (SOME q. distinct q \<and> set q = set rest))) \<in> RAG s" |
|
2000 by auto |
|
2001 qed |
|
2002 thus ?thesis by auto |
|
2003 qed |
|
2004 thus "card {csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs \<and> next_th s thread cs th} = |
|
2005 card {cs. (Cs cs, Th th) \<in> RAG s}" by simp |
|
2006 qed |
|
2007 moreover note ih eq_cnp eq_cnv eq_threads |
|
2008 ultimately show ?thesis by auto |
|
2009 next |
|
2010 case True |
|
2011 assume th_in: "th \<in> set rest" |
|
2012 show ?thesis |
|
2013 proof(cases "next_th s thread cs th") |
|
2014 case False |
|
2015 with eq_wq and th_in have |
|
2016 neq_hd: "th \<noteq> hd (SOME q. distinct q \<and> set q = set rest)" (is "th \<noteq> hd ?rest") |
|
2017 by (auto simp:next_th_def) |
|
2018 have "(th \<in> readys (e # s)) = (th \<in> readys s)" |
|
2019 proof - |
|
2020 from eq_wq and th_in |
|
2021 have "\<not> th \<in> readys s" |
|
2022 apply (auto simp:readys_def s_waiting_def) |
|
2023 apply (rule_tac x = cs in exI, auto) |
|
2024 by (insert vt_s.wq_distinct[of cs], auto simp add: wq_def) |
|
2025 moreover |
|
2026 from eq_wq and th_in and neq_hd |
|
2027 have "\<not> (th \<in> readys (e # s))" |
|
2028 apply (auto simp:readys_def s_waiting_def eq_e wq_def Let_def split:list.splits) |
|
2029 by (rule_tac x = cs in exI, auto simp:eq_set) |
|
2030 ultimately show ?thesis by auto |
|
2031 qed |
|
2032 moreover have "cntCS (e#s) th = cntCS s th" |
|
2033 proof - |
|
2034 from eq_wq and th_in and neq_hd |
|
2035 have "(holdents (e # s) th) = (holdents s th)" |
|
2036 apply (unfold eq_e step_RAG_v[OF vtv], |
|
2037 auto simp:next_th_def eq_set s_RAG_def holdents_test wq_def |
|
2038 Let_def cs_holding_def) |
|
2039 by (insert vt_s.wq_distinct[of cs], auto simp:wq_def) |
|
2040 thus ?thesis by (simp add:cntCS_def) |
|
2041 qed |
|
2042 moreover note ih eq_cnp eq_cnv eq_threads |
|
2043 ultimately show ?thesis by auto |
|
2044 next |
|
2045 case True |
|
2046 let ?rest = " (SOME q. distinct q \<and> set q = set rest)" |
|
2047 let ?t = "hd ?rest" |
|
2048 from True eq_wq th_in neq_th |
|
2049 have "th \<in> readys (e # s)" |
|
2050 apply (auto simp:eq_e readys_def s_waiting_def wq_def |
|
2051 Let_def next_th_def) |
|
2052 proof - |
|
2053 assume eq_wq: "wq_fun (schs s) cs = thread # rest" |
|
2054 and t_in: "?t \<in> set rest" |
|
2055 show "?t \<in> threads s" |
|
2056 proof(rule vt_s.wq_threads) |
|
2057 from eq_wq and t_in |
|
2058 show "?t \<in> set (wq s cs)" by (auto simp:wq_def) |
|
2059 qed |
|
2060 next |
|
2061 fix csa |
|
2062 assume eq_wq: "wq_fun (schs s) cs = thread # rest" |
|
2063 and t_in: "?t \<in> set rest" |
|
2064 and neq_cs: "csa \<noteq> cs" |
|
2065 and t_in': "?t \<in> set (wq_fun (schs s) csa)" |
|
2066 show "?t = hd (wq_fun (schs s) csa)" |
|
2067 proof - |
|
2068 { assume neq_hd': "?t \<noteq> hd (wq_fun (schs s) csa)" |
|
2069 from vt_s.wq_distinct[of cs] and |
|
2070 eq_wq[folded wq_def] and t_in eq_wq |
|
2071 have "?t \<noteq> thread" by auto |
|
2072 with eq_wq and t_in |
|
2073 have w1: "waiting s ?t cs" |
|
2074 by (auto simp:s_waiting_def wq_def) |
|
2075 from t_in' neq_hd' |
|
2076 have w2: "waiting s ?t csa" |
|
2077 by (auto simp:s_waiting_def wq_def) |
|
2078 from vt_s.waiting_unique[OF w1 w2] |
|
2079 and neq_cs have "False" by auto |
|
2080 } thus ?thesis by auto |
|
2081 qed |
|
2082 qed |
|
2083 moreover have "cntP s th = cntV s th + cntCS s th + 1" |
|
2084 proof - |
|
2085 have "th \<notin> readys s" |
|
2086 proof - |
|
2087 from True eq_wq neq_th th_in |
|
2088 show ?thesis |
|
2089 apply (unfold readys_def s_waiting_def, auto) |
|
2090 by (rule_tac x = cs in exI, auto simp add: wq_def) |
|
2091 qed |
|
2092 moreover have "th \<in> threads s" |
|
2093 proof - |
|
2094 from th_in eq_wq |
|
2095 have "th \<in> set (wq s cs)" by simp |
|
2096 from vt_s.wq_threads [OF this] |
|
2097 show ?thesis . |
|
2098 qed |
|
2099 ultimately show ?thesis using ih by auto |
|
2100 qed |
|
2101 moreover from True neq_th have "cntCS (e # s) th = 1 + cntCS s th" |
|
2102 apply (unfold cntCS_def holdents_test eq_e step_RAG_v[OF vtv], auto) |
|
2103 proof - |
|
2104 show "card {csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs} = |
|
2105 Suc (card {cs. (Cs cs, Th th) \<in> RAG s})" |
|
2106 (is "card ?A = Suc (card ?B)") |
|
2107 proof - |
|
2108 have "?A = insert cs ?B" by auto |
|
2109 hence "card ?A = card (insert cs ?B)" by simp |
|
2110 also have "\<dots> = Suc (card ?B)" |
|
2111 proof(rule card_insert_disjoint) |
|
2112 have "?B \<subseteq> ((\<lambda> (x, y). the_cs x) ` RAG s)" |
|
2113 apply (auto simp:image_def) |
|
2114 by (rule_tac x = "(Cs x, Th th)" in bexI, auto) |
|
2115 with vt_s.finite_RAG |
|
2116 show "finite {cs. (Cs cs, Th th) \<in> RAG s}" by (auto intro:finite_subset) |
|
2117 next |
|
2118 show "cs \<notin> {cs. (Cs cs, Th th) \<in> RAG s}" |
|
2119 proof |
|
2120 assume "cs \<in> {cs. (Cs cs, Th th) \<in> RAG s}" |
|
2121 hence "(Cs cs, Th th) \<in> RAG s" by simp |
|
2122 with True neq_th eq_wq show False |
|
2123 by (auto simp:next_th_def s_RAG_def cs_holding_def) |
|
2124 qed |
|
2125 qed |
|
2126 finally show ?thesis . |
|
2127 qed |
|
2128 qed |
|
2129 moreover note eq_cnp eq_cnv |
|
2130 ultimately show ?thesis by simp |
|
2131 qed |
|
2132 qed |
|
2133 } ultimately show ?thesis by blast |
|
2134 qed |
|
2135 next |
3069 next |
2136 case (thread_set thread prio) |
3070 case True |
2137 assume eq_e: "e = Set thread prio" |
3071 from h[unfolded this] |
2138 and is_runing: "thread \<in> runing s" |
3072 have "holding (e#s) th' cs" by (auto simp:holdents_def) |
|
3073 from this[unfolded s_holding_def, folded wq_def, |
|
3074 unfolded wq_es_cs nil_wq'] |
|
3075 show ?thesis by auto |
|
3076 qed |
|
3077 } moreover { |
|
3078 fix cs' |
|
3079 assume h: "cs' \<in> ?R" |
|
3080 have "cs' \<in> ?L" |
|
3081 proof(cases "cs' = cs") |
|
3082 case False |
|
3083 hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp |
|
3084 from h have "holding s th' cs'" by (auto simp:holdents_def) |
|
3085 from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq] |
2139 show ?thesis |
3086 show ?thesis |
2140 proof - |
3087 by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp) |
2141 from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def) |
3088 next |
2142 from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def) |
3089 case True |
2143 have eq_cncs: "cntCS (e#s) th = cntCS s th" |
3090 from h[unfolded this] |
2144 unfolding cntCS_def holdents_test |
3091 have "holding s th' cs" by (auto simp:holdents_def) |
2145 by (simp add:RAG_set_unchanged eq_e) |
3092 from held_unique[OF this holding_th_cs_s] |
2146 from eq_e have eq_readys: "readys (e#s) = readys s" |
3093 have "th' = th" . |
2147 by (simp add:readys_def cs_waiting_def s_waiting_def wq_def, |
3094 with assms show ?thesis by auto |
2148 auto simp:Let_def) |
3095 qed |
2149 { assume "th \<noteq> thread" |
3096 } ultimately show ?thesis by auto |
2150 with eq_readys eq_e |
3097 qed |
2151 have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) = |
3098 |
2152 (th \<in> readys (s) \<or> th \<notin> threads (s))" |
3099 lemma cntCS_kept [simp]: |
2153 by (simp add:threads.simps) |
3100 assumes "th' \<noteq> th" |
2154 with eq_cnp eq_cnv eq_cncs ih is_runing |
3101 shows "cntCS (e#s) th' = cntCS s th'" |
2155 have ?thesis by simp |
3102 by (unfold cntCS_def holdents_kept[OF assms], simp) |
2156 } moreover { |
3103 |
2157 assume eq_th: "th = thread" |
3104 lemma readys_kept1: |
2158 with is_runing ih have " cntP s th = cntV s th + cntCS s th" |
3105 assumes "th' \<in> readys (e#s)" |
2159 by (unfold runing_def, auto) |
3106 shows "th' \<in> readys s" |
2160 moreover from eq_th and eq_readys is_runing have "th \<in> readys (e#s)" |
3107 proof - |
2161 by (simp add:runing_def) |
3108 { fix cs' |
2162 moreover note eq_cnp eq_cnv eq_cncs |
3109 assume wait: "waiting s th' cs'" |
2163 ultimately have ?thesis by auto |
3110 have n_wait: "\<not> waiting (e#s) th' cs'" |
2164 } ultimately show ?thesis by blast |
3111 using assms(1)[unfolded readys_def] by auto |
2165 qed |
3112 have False |
2166 qed |
3113 proof(cases "cs' = cs") |
2167 next |
3114 case False |
2168 case vt_nil |
3115 with n_wait wait |
2169 show ?case |
3116 show ?thesis |
2170 by (unfold cntP_def cntV_def cntCS_def, |
3117 by (unfold s_waiting_def, fold wq_def, auto) |
2171 auto simp:count_def holdents_test s_RAG_def wq_def cs_holding_def) |
3118 next |
2172 qed |
3119 case True |
|
3120 have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)" |
|
3121 using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] . |
|
3122 hence "th' \<in> set rest" by auto |
|
3123 with set_wq' have "th' \<in> set wq'" by metis |
|
3124 with nil_wq' show ?thesis by simp |
|
3125 qed |
|
3126 } thus ?thesis using assms |
|
3127 by (unfold readys_def, auto) |
|
3128 qed |
|
3129 |
|
3130 lemma readys_kept2: |
|
3131 assumes "th' \<in> readys s" |
|
3132 shows "th' \<in> readys (e#s)" |
|
3133 proof - |
|
3134 { fix cs' |
|
3135 assume wait: "waiting (e#s) th' cs'" |
|
3136 have n_wait: "\<not> waiting s th' cs'" |
|
3137 using assms[unfolded readys_def] by auto |
|
3138 have False |
|
3139 proof(cases "cs' = cs") |
|
3140 case False |
|
3141 with n_wait wait |
|
3142 show ?thesis |
|
3143 by (unfold s_waiting_def, fold wq_def, auto) |
|
3144 next |
|
3145 case True |
|
3146 have "th' \<in> set [] \<and> th' \<noteq> hd []" |
|
3147 using wait[unfolded True s_waiting_def, folded wq_def, |
|
3148 unfolded wq_es_cs nil_wq'] . |
|
3149 thus ?thesis by simp |
|
3150 qed |
|
3151 } with assms show ?thesis |
|
3152 by (unfold readys_def, auto) |
|
3153 qed |
|
3154 |
|
3155 lemma readys_simp [simp]: |
|
3156 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
|
3157 using readys_kept1[OF assms] readys_kept2[OF assms] |
|
3158 by metis |
|
3159 |
|
3160 lemma cnp_cnv_cncs_kept: |
|
3161 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3162 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
3163 proof - |
|
3164 { |
|
3165 assume eq_th': "th' = th" |
|
3166 have ?thesis |
|
3167 apply (unfold eq_th' pvD_th_es cntCS_es_th) |
|
3168 by (insert assms[unfolded eq_th'], unfold is_v, simp) |
|
3169 } moreover { |
|
3170 assume h: "th' \<noteq> th" |
|
3171 have ?thesis using assms |
|
3172 apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp) |
|
3173 by (fold is_v, unfold pvD_def, simp) |
|
3174 } ultimately show ?thesis by metis |
|
3175 qed |
|
3176 |
|
3177 end |
|
3178 |
|
3179 context valid_trace_v |
|
3180 begin |
|
3181 |
|
3182 lemma cnp_cnv_cncs_kept: |
|
3183 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3184 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
3185 proof(cases "rest = []") |
|
3186 case True |
|
3187 then interpret vt: valid_trace_v_e by (unfold_locales, simp) |
|
3188 show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast |
|
3189 next |
|
3190 case False |
|
3191 then interpret vt: valid_trace_v_n by (unfold_locales, simp) |
|
3192 show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast |
|
3193 qed |
|
3194 |
|
3195 end |
|
3196 |
|
3197 context valid_trace_create |
|
3198 begin |
|
3199 |
|
3200 lemma th_not_live_s [simp]: "th \<notin> threads s" |
|
3201 proof - |
|
3202 from pip_e[unfolded is_create] |
|
3203 show ?thesis by (cases, simp) |
|
3204 qed |
|
3205 |
|
3206 lemma th_not_ready_s [simp]: "th \<notin> readys s" |
|
3207 using th_not_live_s by (unfold readys_def, simp) |
|
3208 |
|
3209 lemma th_live_es [simp]: "th \<in> threads (e#s)" |
|
3210 by (unfold is_create, simp) |
|
3211 |
|
3212 lemma not_waiting_th_s [simp]: "\<not> waiting s th cs'" |
|
3213 proof |
|
3214 assume "waiting s th cs'" |
|
3215 from this[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3216 have "th \<in> set (wq s cs')" by auto |
|
3217 from wq_threads[OF this] have "th \<in> threads s" . |
|
3218 with th_not_live_s show False by simp |
|
3219 qed |
|
3220 |
|
3221 lemma not_holding_th_s [simp]: "\<not> holding s th cs'" |
|
3222 proof |
|
3223 assume "holding s th cs'" |
|
3224 from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp] |
|
3225 have "th \<in> set (wq s cs')" by auto |
|
3226 from wq_threads[OF this] have "th \<in> threads s" . |
|
3227 with th_not_live_s show False by simp |
|
3228 qed |
|
3229 |
|
3230 lemma not_waiting_th_es [simp]: "\<not> waiting (e#s) th cs'" |
|
3231 proof |
|
3232 assume "waiting (e # s) th cs'" |
|
3233 from this[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3234 have "th \<in> set (wq s cs')" by auto |
|
3235 from wq_threads[OF this] have "th \<in> threads s" . |
|
3236 with th_not_live_s show False by simp |
|
3237 qed |
|
3238 |
|
3239 lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'" |
|
3240 proof |
|
3241 assume "holding (e # s) th cs'" |
|
3242 from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp] |
|
3243 have "th \<in> set (wq s cs')" by auto |
|
3244 from wq_threads[OF this] have "th \<in> threads s" . |
|
3245 with th_not_live_s show False by simp |
|
3246 qed |
|
3247 |
|
3248 lemma ready_th_es [simp]: "th \<in> readys (e#s)" |
|
3249 by (simp add:readys_def) |
|
3250 |
|
3251 lemma holdents_th_s: "holdents s th = {}" |
|
3252 by (unfold holdents_def, auto) |
|
3253 |
|
3254 lemma holdents_th_es: "holdents (e#s) th = {}" |
|
3255 by (unfold holdents_def, auto) |
|
3256 |
|
3257 lemma cntCS_th_s [simp]: "cntCS s th = 0" |
|
3258 by (unfold cntCS_def, simp add:holdents_th_s) |
|
3259 |
|
3260 lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0" |
|
3261 by (unfold cntCS_def, simp add:holdents_th_es) |
|
3262 |
|
3263 lemma pvD_th_s [simp]: "pvD s th = 0" |
|
3264 by (unfold pvD_def, simp) |
|
3265 |
|
3266 lemma pvD_th_es [simp]: "pvD (e#s) th = 0" |
|
3267 by (unfold pvD_def, simp) |
|
3268 |
|
3269 lemma holdents_kept: |
|
3270 assumes "th' \<noteq> th" |
|
3271 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
3272 proof - |
|
3273 { fix cs' |
|
3274 assume h: "cs' \<in> ?L" |
|
3275 hence "cs' \<in> ?R" |
|
3276 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3277 unfold wq_neq_simp, auto) |
|
3278 } moreover { |
|
3279 fix cs' |
|
3280 assume h: "cs' \<in> ?R" |
|
3281 hence "cs' \<in> ?L" |
|
3282 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3283 unfold wq_neq_simp, auto) |
|
3284 } ultimately show ?thesis by auto |
|
3285 qed |
|
3286 |
|
3287 lemma cntCS_kept [simp]: |
|
3288 assumes "th' \<noteq> th" |
|
3289 shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R") |
|
3290 using holdents_kept[OF assms] |
|
3291 by (unfold cntCS_def, simp) |
|
3292 |
|
3293 lemma readys_kept1: |
|
3294 assumes "th' \<noteq> th" |
|
3295 and "th' \<in> readys (e#s)" |
|
3296 shows "th' \<in> readys s" |
|
3297 proof - |
|
3298 { fix cs' |
|
3299 assume wait: "waiting s th' cs'" |
|
3300 have n_wait: "\<not> waiting (e#s) th' cs'" |
|
3301 using assms by (auto simp:readys_def) |
|
3302 from wait[unfolded s_waiting_def, folded wq_def] |
|
3303 n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3304 have False by auto |
|
3305 } thus ?thesis using assms |
|
3306 by (unfold readys_def, auto) |
|
3307 qed |
|
3308 |
|
3309 lemma readys_kept2: |
|
3310 assumes "th' \<noteq> th" |
|
3311 and "th' \<in> readys s" |
|
3312 shows "th' \<in> readys (e#s)" |
|
3313 proof - |
|
3314 { fix cs' |
|
3315 assume wait: "waiting (e#s) th' cs'" |
|
3316 have n_wait: "\<not> waiting s th' cs'" |
|
3317 using assms(2) by (auto simp:readys_def) |
|
3318 from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3319 n_wait[unfolded s_waiting_def, folded wq_def] |
|
3320 have False by auto |
|
3321 } with assms show ?thesis |
|
3322 by (unfold readys_def, auto) |
|
3323 qed |
|
3324 |
|
3325 lemma readys_simp [simp]: |
|
3326 assumes "th' \<noteq> th" |
|
3327 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
|
3328 using readys_kept1[OF assms] readys_kept2[OF assms] |
|
3329 by metis |
|
3330 |
|
3331 lemma pvD_kept [simp]: |
|
3332 assumes "th' \<noteq> th" |
|
3333 shows "pvD (e#s) th' = pvD s th'" |
|
3334 using assms |
|
3335 by (unfold pvD_def, simp) |
|
3336 |
|
3337 lemma cnp_cnv_cncs_kept: |
|
3338 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3339 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
3340 proof - |
|
3341 { |
|
3342 assume eq_th': "th' = th" |
|
3343 have ?thesis using assms |
|
3344 by (unfold eq_th', simp, unfold is_create, simp) |
|
3345 } moreover { |
|
3346 assume h: "th' \<noteq> th" |
|
3347 hence ?thesis using assms |
|
3348 by (simp, simp add:is_create) |
|
3349 } ultimately show ?thesis by metis |
|
3350 qed |
|
3351 |
|
3352 end |
|
3353 |
|
3354 context valid_trace_exit |
|
3355 begin |
|
3356 |
|
3357 lemma th_live_s [simp]: "th \<in> threads s" |
|
3358 proof - |
|
3359 from pip_e[unfolded is_exit] |
|
3360 show ?thesis |
|
3361 by (cases, unfold runing_def readys_def, simp) |
|
3362 qed |
|
3363 |
|
3364 lemma th_ready_s [simp]: "th \<in> readys s" |
|
3365 proof - |
|
3366 from pip_e[unfolded is_exit] |
|
3367 show ?thesis |
|
3368 by (cases, unfold runing_def, simp) |
|
3369 qed |
|
3370 |
|
3371 lemma th_not_live_es [simp]: "th \<notin> threads (e#s)" |
|
3372 by (unfold is_exit, simp) |
|
3373 |
|
3374 lemma not_holding_th_s [simp]: "\<not> holding s th cs'" |
|
3375 proof - |
|
3376 from pip_e[unfolded is_exit] |
|
3377 show ?thesis |
|
3378 by (cases, unfold holdents_def, auto) |
|
3379 qed |
|
3380 |
|
3381 lemma cntCS_th_s [simp]: "cntCS s th = 0" |
|
3382 proof - |
|
3383 from pip_e[unfolded is_exit] |
|
3384 show ?thesis |
|
3385 by (cases, unfold cntCS_def, simp) |
|
3386 qed |
|
3387 |
|
3388 lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'" |
|
3389 proof |
|
3390 assume "holding (e # s) th cs'" |
|
3391 from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp] |
|
3392 have "holding s th cs'" |
|
3393 by (unfold s_holding_def, fold wq_def, auto) |
|
3394 with not_holding_th_s |
|
3395 show False by simp |
|
3396 qed |
|
3397 |
|
3398 lemma ready_th_es [simp]: "th \<notin> readys (e#s)" |
|
3399 by (simp add:readys_def) |
|
3400 |
|
3401 lemma holdents_th_s: "holdents s th = {}" |
|
3402 by (unfold holdents_def, auto) |
|
3403 |
|
3404 lemma holdents_th_es: "holdents (e#s) th = {}" |
|
3405 by (unfold holdents_def, auto) |
|
3406 |
|
3407 lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0" |
|
3408 by (unfold cntCS_def, simp add:holdents_th_es) |
|
3409 |
|
3410 lemma pvD_th_s [simp]: "pvD s th = 0" |
|
3411 by (unfold pvD_def, simp) |
|
3412 |
|
3413 lemma pvD_th_es [simp]: "pvD (e#s) th = 0" |
|
3414 by (unfold pvD_def, simp) |
|
3415 |
|
3416 lemma holdents_kept: |
|
3417 assumes "th' \<noteq> th" |
|
3418 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
3419 proof - |
|
3420 { fix cs' |
|
3421 assume h: "cs' \<in> ?L" |
|
3422 hence "cs' \<in> ?R" |
|
3423 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3424 unfold wq_neq_simp, auto) |
|
3425 } moreover { |
|
3426 fix cs' |
|
3427 assume h: "cs' \<in> ?R" |
|
3428 hence "cs' \<in> ?L" |
|
3429 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3430 unfold wq_neq_simp, auto) |
|
3431 } ultimately show ?thesis by auto |
|
3432 qed |
|
3433 |
|
3434 lemma cntCS_kept [simp]: |
|
3435 assumes "th' \<noteq> th" |
|
3436 shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R") |
|
3437 using holdents_kept[OF assms] |
|
3438 by (unfold cntCS_def, simp) |
|
3439 |
|
3440 lemma readys_kept1: |
|
3441 assumes "th' \<noteq> th" |
|
3442 and "th' \<in> readys (e#s)" |
|
3443 shows "th' \<in> readys s" |
|
3444 proof - |
|
3445 { fix cs' |
|
3446 assume wait: "waiting s th' cs'" |
|
3447 have n_wait: "\<not> waiting (e#s) th' cs'" |
|
3448 using assms by (auto simp:readys_def) |
|
3449 from wait[unfolded s_waiting_def, folded wq_def] |
|
3450 n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3451 have False by auto |
|
3452 } thus ?thesis using assms |
|
3453 by (unfold readys_def, auto) |
|
3454 qed |
|
3455 |
|
3456 lemma readys_kept2: |
|
3457 assumes "th' \<noteq> th" |
|
3458 and "th' \<in> readys s" |
|
3459 shows "th' \<in> readys (e#s)" |
|
3460 proof - |
|
3461 { fix cs' |
|
3462 assume wait: "waiting (e#s) th' cs'" |
|
3463 have n_wait: "\<not> waiting s th' cs'" |
|
3464 using assms(2) by (auto simp:readys_def) |
|
3465 from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3466 n_wait[unfolded s_waiting_def, folded wq_def] |
|
3467 have False by auto |
|
3468 } with assms show ?thesis |
|
3469 by (unfold readys_def, auto) |
|
3470 qed |
|
3471 |
|
3472 lemma readys_simp [simp]: |
|
3473 assumes "th' \<noteq> th" |
|
3474 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
|
3475 using readys_kept1[OF assms] readys_kept2[OF assms] |
|
3476 by metis |
|
3477 |
|
3478 lemma pvD_kept [simp]: |
|
3479 assumes "th' \<noteq> th" |
|
3480 shows "pvD (e#s) th' = pvD s th'" |
|
3481 using assms |
|
3482 by (unfold pvD_def, simp) |
|
3483 |
|
3484 lemma cnp_cnv_cncs_kept: |
|
3485 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3486 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
3487 proof - |
|
3488 { |
|
3489 assume eq_th': "th' = th" |
|
3490 have ?thesis using assms |
|
3491 by (unfold eq_th', simp, unfold is_exit, simp) |
|
3492 } moreover { |
|
3493 assume h: "th' \<noteq> th" |
|
3494 hence ?thesis using assms |
|
3495 by (simp, simp add:is_exit) |
|
3496 } ultimately show ?thesis by metis |
|
3497 qed |
|
3498 |
|
3499 end |
|
3500 |
|
3501 context valid_trace_set |
|
3502 begin |
|
3503 |
|
3504 lemma th_live_s [simp]: "th \<in> threads s" |
|
3505 proof - |
|
3506 from pip_e[unfolded is_set] |
|
3507 show ?thesis |
|
3508 by (cases, unfold runing_def readys_def, simp) |
|
3509 qed |
|
3510 |
|
3511 lemma th_ready_s [simp]: "th \<in> readys s" |
|
3512 proof - |
|
3513 from pip_e[unfolded is_set] |
|
3514 show ?thesis |
|
3515 by (cases, unfold runing_def, simp) |
|
3516 qed |
|
3517 |
|
3518 lemma th_not_live_es [simp]: "th \<in> threads (e#s)" |
|
3519 by (unfold is_set, simp) |
|
3520 |
|
3521 |
|
3522 lemma holdents_kept: |
|
3523 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
3524 proof - |
|
3525 { fix cs' |
|
3526 assume h: "cs' \<in> ?L" |
|
3527 hence "cs' \<in> ?R" |
|
3528 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3529 unfold wq_neq_simp, auto) |
|
3530 } moreover { |
|
3531 fix cs' |
|
3532 assume h: "cs' \<in> ?R" |
|
3533 hence "cs' \<in> ?L" |
|
3534 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3535 unfold wq_neq_simp, auto) |
|
3536 } ultimately show ?thesis by auto |
|
3537 qed |
|
3538 |
|
3539 lemma cntCS_kept [simp]: |
|
3540 shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R") |
|
3541 using holdents_kept |
|
3542 by (unfold cntCS_def, simp) |
|
3543 |
|
3544 lemma threads_kept[simp]: |
|
3545 "threads (e#s) = threads s" |
|
3546 by (unfold is_set, simp) |
|
3547 |
|
3548 lemma readys_kept1: |
|
3549 assumes "th' \<in> readys (e#s)" |
|
3550 shows "th' \<in> readys s" |
|
3551 proof - |
|
3552 { fix cs' |
|
3553 assume wait: "waiting s th' cs'" |
|
3554 have n_wait: "\<not> waiting (e#s) th' cs'" |
|
3555 using assms by (auto simp:readys_def) |
|
3556 from wait[unfolded s_waiting_def, folded wq_def] |
|
3557 n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3558 have False by auto |
|
3559 } moreover have "th' \<in> threads s" |
|
3560 using assms[unfolded readys_def] by auto |
|
3561 ultimately show ?thesis |
|
3562 by (unfold readys_def, auto) |
|
3563 qed |
|
3564 |
|
3565 lemma readys_kept2: |
|
3566 assumes "th' \<in> readys s" |
|
3567 shows "th' \<in> readys (e#s)" |
|
3568 proof - |
|
3569 { fix cs' |
|
3570 assume wait: "waiting (e#s) th' cs'" |
|
3571 have n_wait: "\<not> waiting s th' cs'" |
|
3572 using assms by (auto simp:readys_def) |
|
3573 from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3574 n_wait[unfolded s_waiting_def, folded wq_def] |
|
3575 have False by auto |
|
3576 } with assms show ?thesis |
|
3577 by (unfold readys_def, auto) |
|
3578 qed |
|
3579 |
|
3580 lemma readys_simp [simp]: |
|
3581 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
|
3582 using readys_kept1 readys_kept2 |
|
3583 by metis |
|
3584 |
|
3585 lemma pvD_kept [simp]: |
|
3586 shows "pvD (e#s) th' = pvD s th'" |
|
3587 by (unfold pvD_def, simp) |
|
3588 |
|
3589 lemma cnp_cnv_cncs_kept: |
|
3590 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3591 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
3592 using assms |
|
3593 by (unfold is_set, simp, fold is_set, simp) |
|
3594 |
|
3595 end |
|
3596 |
|
3597 context valid_trace |
|
3598 begin |
|
3599 |
|
3600 lemma cnp_cnv_cncs: "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3601 proof(induct rule:ind) |
|
3602 case Nil |
|
3603 thus ?case |
|
3604 by (unfold cntP_def cntV_def pvD_def cntCS_def holdents_def |
|
3605 s_holding_def, simp) |
|
3606 next |
|
3607 case (Cons s e) |
|
3608 interpret vt_e: valid_trace_e s e using Cons by simp |
|
3609 show ?case |
|
3610 proof(cases e) |
|
3611 case (Create th prio) |
|
3612 interpret vt_create: valid_trace_create s e th prio |
|
3613 using Create by (unfold_locales, simp) |
|
3614 show ?thesis using Cons by (simp add: vt_create.cnp_cnv_cncs_kept) |
|
3615 next |
|
3616 case (Exit th) |
|
3617 interpret vt_exit: valid_trace_exit s e th |
|
3618 using Exit by (unfold_locales, simp) |
|
3619 show ?thesis using Cons by (simp add: vt_exit.cnp_cnv_cncs_kept) |
|
3620 next |
|
3621 case (P th cs) |
|
3622 interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp) |
|
3623 show ?thesis using Cons by (simp add: vt_p.cnp_cnv_cncs_kept) |
|
3624 next |
|
3625 case (V th cs) |
|
3626 interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp) |
|
3627 show ?thesis using Cons by (simp add: vt_v.cnp_cnv_cncs_kept) |
|
3628 next |
|
3629 case (Set th prio) |
|
3630 interpret vt_set: valid_trace_set s e th prio |
|
3631 using Set by (unfold_locales, simp) |
|
3632 show ?thesis using Cons by (simp add: vt_set.cnp_cnv_cncs_kept) |
|
3633 qed |
|
3634 qed |
|
3635 |
|
3636 lemma not_thread_holdents: |
|
3637 assumes not_in: "th \<notin> threads s" |
|
3638 shows "holdents s th = {}" |
|
3639 proof - |
|
3640 { fix cs |
|
3641 assume "cs \<in> holdents s th" |
|
3642 hence "holding s th cs" by (auto simp:holdents_def) |
|
3643 from this[unfolded s_holding_def, folded wq_def] |
|
3644 have "th \<in> set (wq s cs)" by auto |
|
3645 with wq_threads have "th \<in> threads s" by auto |
|
3646 with assms |
|
3647 have False by simp |
|
3648 } thus ?thesis by auto |
2173 qed |
3649 qed |
2174 |
3650 |
2175 lemma not_thread_cncs: |
3651 lemma not_thread_cncs: |
2176 assumes not_in: "th \<notin> threads s" |
3652 assumes not_in: "th \<notin> threads s" |
2177 shows "cntCS s th = 0" |
3653 shows "cntCS s th = 0" |
2178 proof - |
3654 using not_thread_holdents[OF assms] |
2179 from vt not_in show ?thesis |
3655 by (simp add:cntCS_def) |
2180 proof(induct arbitrary:th) |
3656 |
2181 case (vt_cons s e th) |
3657 lemma cnp_cnv_eq: |
2182 interpret vt_s: valid_trace s using vt_cons(1) |
3658 assumes "th \<notin> threads s" |
2183 by (unfold_locales, simp) |
3659 shows "cntP s th = cntV s th" |
2184 assume vt: "vt s" |
3660 using assms cnp_cnv_cncs not_thread_cncs pvD_def |
2185 and ih: "\<And>th. th \<notin> threads s \<Longrightarrow> cntCS s th = 0" |
3661 by (auto) |
2186 and stp: "step s e" |
|
2187 and not_in: "th \<notin> threads (e # s)" |
|
2188 from stp show ?case |
|
2189 proof(cases) |
|
2190 case (thread_create thread prio) |
|
2191 assume eq_e: "e = Create thread prio" |
|
2192 and not_in': "thread \<notin> threads s" |
|
2193 have "cntCS (e # s) th = cntCS s th" |
|
2194 apply (unfold eq_e cntCS_def holdents_test) |
|
2195 by (simp add:RAG_create_unchanged) |
|
2196 moreover have "th \<notin> threads s" |
|
2197 proof - |
|
2198 from not_in eq_e show ?thesis by simp |
|
2199 qed |
|
2200 moreover note ih ultimately show ?thesis by auto |
|
2201 next |
|
2202 case (thread_exit thread) |
|
2203 assume eq_e: "e = Exit thread" |
|
2204 and nh: "holdents s thread = {}" |
|
2205 have eq_cns: "cntCS (e # s) th = cntCS s th" |
|
2206 apply (unfold eq_e cntCS_def holdents_test) |
|
2207 by (simp add:RAG_exit_unchanged) |
|
2208 show ?thesis |
|
2209 proof(cases "th = thread") |
|
2210 case True |
|
2211 have "cntCS s th = 0" by (unfold cntCS_def, auto simp:nh True) |
|
2212 with eq_cns show ?thesis by simp |
|
2213 next |
|
2214 case False |
|
2215 with not_in and eq_e |
|
2216 have "th \<notin> threads s" by simp |
|
2217 from ih[OF this] and eq_cns show ?thesis by simp |
|
2218 qed |
|
2219 next |
|
2220 case (thread_P thread cs) |
|
2221 assume eq_e: "e = P thread cs" |
|
2222 and is_runing: "thread \<in> runing s" |
|
2223 from assms thread_P ih vt stp thread_P have vtp: "vt (P thread cs#s)" by auto |
|
2224 have neq_th: "th \<noteq> thread" |
|
2225 proof - |
|
2226 from not_in eq_e have "th \<notin> threads s" by simp |
|
2227 moreover from is_runing have "thread \<in> threads s" |
|
2228 by (simp add:runing_def readys_def) |
|
2229 ultimately show ?thesis by auto |
|
2230 qed |
|
2231 hence "cntCS (e # s) th = cntCS s th " |
|
2232 apply (unfold cntCS_def holdents_test eq_e) |
|
2233 by (unfold step_RAG_p[OF vtp], auto) |
|
2234 moreover have "cntCS s th = 0" |
|
2235 proof(rule ih) |
|
2236 from not_in eq_e show "th \<notin> threads s" by simp |
|
2237 qed |
|
2238 ultimately show ?thesis by simp |
|
2239 next |
|
2240 case (thread_V thread cs) |
|
2241 assume eq_e: "e = V thread cs" |
|
2242 and is_runing: "thread \<in> runing s" |
|
2243 and hold: "holding s thread cs" |
|
2244 have neq_th: "th \<noteq> thread" |
|
2245 proof - |
|
2246 from not_in eq_e have "th \<notin> threads s" by simp |
|
2247 moreover from is_runing have "thread \<in> threads s" |
|
2248 by (simp add:runing_def readys_def) |
|
2249 ultimately show ?thesis by auto |
|
2250 qed |
|
2251 from assms thread_V vt stp ih |
|
2252 have vtv: "vt (V thread cs#s)" by auto |
|
2253 then interpret vt_v: valid_trace "(V thread cs#s)" |
|
2254 by (unfold_locales, simp) |
|
2255 from hold obtain rest |
|
2256 where eq_wq: "wq s cs = thread # rest" |
|
2257 by (case_tac "wq s cs", auto simp: wq_def s_holding_def) |
|
2258 from not_in eq_e eq_wq |
|
2259 have "\<not> next_th s thread cs th" |
|
2260 apply (auto simp:next_th_def) |
|
2261 proof - |
|
2262 assume ne: "rest \<noteq> []" |
|
2263 and ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> threads s" (is "?t \<notin> threads s") |
|
2264 have "?t \<in> set rest" |
|
2265 proof(rule someI2) |
|
2266 from vt_v.wq_distinct[of cs] and eq_wq |
|
2267 show "distinct rest \<and> set rest = set rest" |
|
2268 by (metis distinct.simps(2) vt_s.wq_distinct) |
|
2269 next |
|
2270 fix x assume "distinct x \<and> set x = set rest" with ne |
|
2271 show "hd x \<in> set rest" by (cases x, auto) |
|
2272 qed |
|
2273 with eq_wq have "?t \<in> set (wq s cs)" by simp |
|
2274 from vt_s.wq_threads[OF this] and ni |
|
2275 show False |
|
2276 using `hd (SOME q. distinct q \<and> set q = set rest) \<in> set (wq s cs)` |
|
2277 ni vt_s.wq_threads by blast |
|
2278 qed |
|
2279 moreover note neq_th eq_wq |
|
2280 ultimately have "cntCS (e # s) th = cntCS s th" |
|
2281 by (unfold eq_e cntCS_def holdents_test step_RAG_v[OF vtv], auto) |
|
2282 moreover have "cntCS s th = 0" |
|
2283 proof(rule ih) |
|
2284 from not_in eq_e show "th \<notin> threads s" by simp |
|
2285 qed |
|
2286 ultimately show ?thesis by simp |
|
2287 next |
|
2288 case (thread_set thread prio) |
|
2289 print_facts |
|
2290 assume eq_e: "e = Set thread prio" |
|
2291 and is_runing: "thread \<in> runing s" |
|
2292 from not_in and eq_e have "th \<notin> threads s" by auto |
|
2293 from ih [OF this] and eq_e |
|
2294 show ?thesis |
|
2295 apply (unfold eq_e cntCS_def holdents_test) |
|
2296 by (simp add:RAG_set_unchanged) |
|
2297 qed |
|
2298 next |
|
2299 case vt_nil |
|
2300 show ?case |
|
2301 by (unfold cntCS_def, |
|
2302 auto simp:count_def holdents_test s_RAG_def wq_def cs_holding_def) |
|
2303 qed |
|
2304 qed |
|
2305 |
|
2306 end |
|
2307 |
|
2308 lemma eq_waiting: "waiting (wq (s::state)) th cs = waiting s th cs" |
|
2309 by (auto simp:s_waiting_def cs_waiting_def wq_def) |
|
2310 |
|
2311 context valid_trace |
|
2312 begin |
|
2313 |
|
2314 lemma dm_RAG_threads: |
|
2315 assumes in_dom: "(Th th) \<in> Domain (RAG s)" |
|
2316 shows "th \<in> threads s" |
|
2317 proof - |
|
2318 from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto |
|
2319 moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto |
|
2320 ultimately have "(Th th, Cs cs) \<in> RAG s" by simp |
|
2321 hence "th \<in> set (wq s cs)" |
|
2322 by (unfold s_RAG_def, auto simp:cs_waiting_def) |
|
2323 from wq_threads [OF this] show ?thesis . |
|
2324 qed |
|
2325 |
|
2326 end |
|
2327 |
|
2328 lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th" |
|
2329 unfolding cp_def wq_def |
|
2330 apply(induct s rule: schs.induct) |
|
2331 thm cpreced_initial |
|
2332 apply(simp add: Let_def cpreced_initial) |
|
2333 apply(simp add: Let_def) |
|
2334 apply(simp add: Let_def) |
|
2335 apply(simp add: Let_def) |
|
2336 apply(subst (2) schs.simps) |
|
2337 apply(simp add: Let_def) |
|
2338 apply(subst (2) schs.simps) |
|
2339 apply(simp add: Let_def) |
|
2340 done |
|
2341 |
|
2342 context valid_trace |
|
2343 begin |
|
2344 |
3662 |
2345 lemma runing_unique: |
3663 lemma runing_unique: |
2346 assumes runing_1: "th1 \<in> runing s" |
3664 assumes runing_1: "th1 \<in> runing s" |
2347 and runing_2: "th2 \<in> runing s" |
3665 and runing_2: "th2 \<in> runing s" |
2348 shows "th1 = th2" |
3666 shows "th1 = th2" |
2349 proof - |
3667 proof - |
2350 from runing_1 and runing_2 have "cp s th1 = cp s th2" |
3668 from runing_1 and runing_2 have "cp s th1 = cp s th2" |
2351 unfolding runing_def |
3669 unfolding runing_def by auto |
2352 apply(simp) |
3670 from this[unfolded cp_alt_def] |
2353 done |
3671 have eq_max: |
2354 hence eq_max: "Max ((\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1)) = |
3672 "Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th1)}) = |
2355 Max ((\<lambda>th. preced th s) ` ({th2} \<union> dependants (wq s) th2))" |
3673 Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th2)})" |
2356 (is "Max (?f ` ?A) = Max (?f ` ?B)") |
3674 (is "Max ?L = Max ?R") . |
2357 unfolding cp_eq_cpreced |
3675 have "Max ?L \<in> ?L" |
2358 unfolding cpreced_def . |
3676 proof(rule Max_in) |
2359 obtain th1' where th1_in: "th1' \<in> ?A" and eq_f_th1: "?f th1' = Max (?f ` ?A)" |
3677 show "finite ?L" by (simp add: finite_subtree_threads) |
2360 proof - |
3678 next |
2361 have h1: "finite (?f ` ?A)" |
3679 show "?L \<noteq> {}" using subtree_def by fastforce |
2362 proof - |
3680 qed |
2363 have "finite ?A" |
3681 then obtain th1' where |
2364 proof - |
3682 h_1: "Th th1' \<in> subtree (RAG s) (Th th1)" "the_preced s th1' = Max ?L" |
2365 have "finite (dependants (wq s) th1)" |
3683 by auto |
2366 proof- |
3684 have "Max ?R \<in> ?R" |
2367 have "finite {th'. (Th th', Th th1) \<in> (RAG (wq s))\<^sup>+}" |
3685 proof(rule Max_in) |
2368 proof - |
3686 show "finite ?R" by (simp add: finite_subtree_threads) |
2369 let ?F = "\<lambda> (x, y). the_th x" |
3687 next |
2370 have "{th'. (Th th', Th th1) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)" |
3688 show "?R \<noteq> {}" using subtree_def by fastforce |
2371 apply (auto simp:image_def) |
3689 qed |
2372 by (rule_tac x = "(Th x, Th th1)" in bexI, auto) |
3690 then obtain th2' where |
2373 moreover have "finite \<dots>" |
3691 h_2: "Th th2' \<in> subtree (RAG s) (Th th2)" "the_preced s th2' = Max ?R" |
2374 proof - |
3692 by auto |
2375 from finite_RAG have "finite (RAG s)" . |
3693 have "th1' = th2'" |
2376 hence "finite ((RAG (wq s))\<^sup>+)" |
3694 proof(rule preced_unique) |
2377 apply (unfold finite_trancl) |
3695 from h_1(1) |
2378 by (auto simp: s_RAG_def cs_RAG_def wq_def) |
3696 show "th1' \<in> threads s" |
2379 thus ?thesis by auto |
3697 proof(cases rule:subtreeE) |
2380 qed |
3698 case 1 |
2381 ultimately show ?thesis by (auto intro:finite_subset) |
3699 hence "th1' = th1" by simp |
2382 qed |
3700 with runing_1 show ?thesis by (auto simp:runing_def readys_def) |
2383 thus ?thesis by (simp add:cs_dependants_def) |
3701 next |
2384 qed |
3702 case 2 |
2385 thus ?thesis by simp |
3703 from this(2) |
2386 qed |
3704 have "(Th th1', Th th1) \<in> (RAG s)^+" by (auto simp:ancestors_def) |
2387 thus ?thesis by auto |
3705 from tranclD[OF this] |
2388 qed |
3706 have "(Th th1') \<in> Domain (RAG s)" by auto |
2389 moreover have h2: "(?f ` ?A) \<noteq> {}" |
|
2390 proof - |
|
2391 have "?A \<noteq> {}" by simp |
|
2392 thus ?thesis by simp |
|
2393 qed |
|
2394 from Max_in [OF h1 h2] |
|
2395 have "Max (?f ` ?A) \<in> (?f ` ?A)" . |
|
2396 thus ?thesis |
|
2397 thm cpreced_def |
|
2398 unfolding cpreced_def[symmetric] |
|
2399 unfolding cp_eq_cpreced[symmetric] |
|
2400 unfolding cpreced_def |
|
2401 using that[intro] by (auto) |
|
2402 qed |
|
2403 obtain th2' where th2_in: "th2' \<in> ?B" and eq_f_th2: "?f th2' = Max (?f ` ?B)" |
|
2404 proof - |
|
2405 have h1: "finite (?f ` ?B)" |
|
2406 proof - |
|
2407 have "finite ?B" |
|
2408 proof - |
|
2409 have "finite (dependants (wq s) th2)" |
|
2410 proof- |
|
2411 have "finite {th'. (Th th', Th th2) \<in> (RAG (wq s))\<^sup>+}" |
|
2412 proof - |
|
2413 let ?F = "\<lambda> (x, y). the_th x" |
|
2414 have "{th'. (Th th', Th th2) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)" |
|
2415 apply (auto simp:image_def) |
|
2416 by (rule_tac x = "(Th x, Th th2)" in bexI, auto) |
|
2417 moreover have "finite \<dots>" |
|
2418 proof - |
|
2419 from finite_RAG have "finite (RAG s)" . |
|
2420 hence "finite ((RAG (wq s))\<^sup>+)" |
|
2421 apply (unfold finite_trancl) |
|
2422 by (auto simp: s_RAG_def cs_RAG_def wq_def) |
|
2423 thus ?thesis by auto |
|
2424 qed |
|
2425 ultimately show ?thesis by (auto intro:finite_subset) |
|
2426 qed |
|
2427 thus ?thesis by (simp add:cs_dependants_def) |
|
2428 qed |
|
2429 thus ?thesis by simp |
|
2430 qed |
|
2431 thus ?thesis by auto |
|
2432 qed |
|
2433 moreover have h2: "(?f ` ?B) \<noteq> {}" |
|
2434 proof - |
|
2435 have "?B \<noteq> {}" by simp |
|
2436 thus ?thesis by simp |
|
2437 qed |
|
2438 from Max_in [OF h1 h2] |
|
2439 have "Max (?f ` ?B) \<in> (?f ` ?B)" . |
|
2440 thus ?thesis by (auto intro:that) |
|
2441 qed |
|
2442 from eq_f_th1 eq_f_th2 eq_max |
|
2443 have eq_preced: "preced th1' s = preced th2' s" by auto |
|
2444 hence eq_th12: "th1' = th2'" |
|
2445 proof (rule preced_unique) |
|
2446 from th1_in have "th1' = th1 \<or> (th1' \<in> dependants (wq s) th1)" by simp |
|
2447 thus "th1' \<in> threads s" |
|
2448 proof |
|
2449 assume "th1' \<in> dependants (wq s) th1" |
|
2450 hence "(Th th1') \<in> Domain ((RAG s)^+)" |
|
2451 apply (unfold cs_dependants_def cs_RAG_def s_RAG_def) |
|
2452 by (auto simp:Domain_def) |
|
2453 hence "(Th th1') \<in> Domain (RAG s)" by (simp add:trancl_domain) |
|
2454 from dm_RAG_threads[OF this] show ?thesis . |
3707 from dm_RAG_threads[OF this] show ?thesis . |
|
3708 qed |
|
3709 next |
|
3710 from h_2(1) |
|
3711 show "th2' \<in> threads s" |
|
3712 proof(cases rule:subtreeE) |
|
3713 case 1 |
|
3714 hence "th2' = th2" by simp |
|
3715 with runing_2 show ?thesis by (auto simp:runing_def readys_def) |
2455 next |
3716 next |
2456 assume "th1' = th1" |
3717 case 2 |
2457 with runing_1 show ?thesis |
3718 from this(2) |
|
3719 have "(Th th2', Th th2) \<in> (RAG s)^+" by (auto simp:ancestors_def) |
|
3720 from tranclD[OF this] |
|
3721 have "(Th th2') \<in> Domain (RAG s)" by auto |
|
3722 from dm_RAG_threads[OF this] show ?thesis . |
|
3723 qed |
|
3724 next |
|
3725 have "the_preced s th1' = the_preced s th2'" |
|
3726 using eq_max h_1(2) h_2(2) by metis |
|
3727 thus "preced th1' s = preced th2' s" by (simp add:the_preced_def) |
|
3728 qed |
|
3729 from h_1(1)[unfolded this] |
|
3730 have star1: "(Th th2', Th th1) \<in> (RAG s)^*" by (auto simp:subtree_def) |
|
3731 from h_2(1)[unfolded this] |
|
3732 have star2: "(Th th2', Th th2) \<in> (RAG s)^*" by (auto simp:subtree_def) |
|
3733 from star_rpath[OF star1] obtain xs1 |
|
3734 where rp1: "rpath (RAG s) (Th th2') xs1 (Th th1)" |
|
3735 by auto |
|
3736 from star_rpath[OF star2] obtain xs2 |
|
3737 where rp2: "rpath (RAG s) (Th th2') xs2 (Th th2)" |
|
3738 by auto |
|
3739 from rp1 rp2 |
|
3740 show ?thesis |
|
3741 proof(cases) |
|
3742 case (less_1 xs') |
|
3743 moreover have "xs' = []" |
|
3744 proof(rule ccontr) |
|
3745 assume otherwise: "xs' \<noteq> []" |
|
3746 from rpath_plus[OF less_1(3) this] |
|
3747 have "(Th th1, Th th2) \<in> (RAG s)\<^sup>+" . |
|
3748 from tranclD[OF this] |
|
3749 obtain cs where "waiting s th1 cs" |
|
3750 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
3751 with runing_1 show False |
2458 by (unfold runing_def readys_def, auto) |
3752 by (unfold runing_def readys_def, auto) |
2459 qed |
3753 qed |
2460 next |
3754 ultimately have "xs2 = xs1" by simp |
2461 from th2_in have "th2' = th2 \<or> (th2' \<in> dependants (wq s) th2)" by simp |
3755 from rpath_dest_eq[OF rp1 rp2[unfolded this]] |
2462 thus "th2' \<in> threads s" |
3756 show ?thesis by simp |
2463 proof |
3757 next |
2464 assume "th2' \<in> dependants (wq s) th2" |
3758 case (less_2 xs') |
2465 hence "(Th th2') \<in> Domain ((RAG s)^+)" |
3759 moreover have "xs' = []" |
2466 apply (unfold cs_dependants_def cs_RAG_def s_RAG_def) |
3760 proof(rule ccontr) |
2467 by (auto simp:Domain_def) |
3761 assume otherwise: "xs' \<noteq> []" |
2468 hence "(Th th2') \<in> Domain (RAG s)" by (simp add:trancl_domain) |
3762 from rpath_plus[OF less_2(3) this] |
2469 from dm_RAG_threads[OF this] show ?thesis . |
3763 have "(Th th2, Th th1) \<in> (RAG s)\<^sup>+" . |
2470 next |
3764 from tranclD[OF this] |
2471 assume "th2' = th2" |
3765 obtain cs where "waiting s th2 cs" |
2472 with runing_2 show ?thesis |
3766 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
3767 with runing_2 show False |
2473 by (unfold runing_def readys_def, auto) |
3768 by (unfold runing_def readys_def, auto) |
2474 qed |
3769 qed |
2475 qed |
3770 ultimately have "xs2 = xs1" by simp |
2476 from th1_in have "th1' = th1 \<or> th1' \<in> dependants (wq s) th1" by simp |
3771 from rpath_dest_eq[OF rp1 rp2[unfolded this]] |
2477 thus ?thesis |
3772 show ?thesis by simp |
2478 proof |
3773 qed |
2479 assume eq_th': "th1' = th1" |
3774 qed |
2480 from th2_in have "th2' = th2 \<or> th2' \<in> dependants (wq s) th2" by simp |
3775 |
2481 thus ?thesis |
3776 lemma card_runing: "card (runing s) \<le> 1" |
2482 proof |
3777 proof(cases "runing s = {}") |
2483 assume "th2' = th2" thus ?thesis using eq_th' eq_th12 by simp |
3778 case True |
2484 next |
3779 thus ?thesis by auto |
2485 assume "th2' \<in> dependants (wq s) th2" |
3780 next |
2486 with eq_th12 eq_th' have "th1 \<in> dependants (wq s) th2" by simp |
3781 case False |
2487 hence "(Th th1, Th th2) \<in> (RAG s)^+" |
3782 then obtain th where [simp]: "th \<in> runing s" by auto |
2488 by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp) |
3783 from runing_unique[OF this] |
2489 hence "Th th1 \<in> Domain ((RAG s)^+)" |
3784 have "runing s = {th}" by auto |
2490 apply (unfold cs_dependants_def cs_RAG_def s_RAG_def) |
3785 thus ?thesis by auto |
2491 by (auto simp:Domain_def) |
3786 qed |
2492 hence "Th th1 \<in> Domain (RAG s)" by (simp add:trancl_domain) |
|
2493 then obtain n where d: "(Th th1, n) \<in> RAG s" by (auto simp:Domain_def) |
|
2494 from RAG_target_th [OF this] |
|
2495 obtain cs' where "n = Cs cs'" by auto |
|
2496 with d have "(Th th1, Cs cs') \<in> RAG s" by simp |
|
2497 with runing_1 have "False" |
|
2498 apply (unfold runing_def readys_def s_RAG_def) |
|
2499 by (auto simp:eq_waiting) |
|
2500 thus ?thesis by simp |
|
2501 qed |
|
2502 next |
|
2503 assume th1'_in: "th1' \<in> dependants (wq s) th1" |
|
2504 from th2_in have "th2' = th2 \<or> th2' \<in> dependants (wq s) th2" by simp |
|
2505 thus ?thesis |
|
2506 proof |
|
2507 assume "th2' = th2" |
|
2508 with th1'_in eq_th12 have "th2 \<in> dependants (wq s) th1" by simp |
|
2509 hence "(Th th2, Th th1) \<in> (RAG s)^+" |
|
2510 by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp) |
|
2511 hence "Th th2 \<in> Domain ((RAG s)^+)" |
|
2512 apply (unfold cs_dependants_def cs_RAG_def s_RAG_def) |
|
2513 by (auto simp:Domain_def) |
|
2514 hence "Th th2 \<in> Domain (RAG s)" by (simp add:trancl_domain) |
|
2515 then obtain n where d: "(Th th2, n) \<in> RAG s" by (auto simp:Domain_def) |
|
2516 from RAG_target_th [OF this] |
|
2517 obtain cs' where "n = Cs cs'" by auto |
|
2518 with d have "(Th th2, Cs cs') \<in> RAG s" by simp |
|
2519 with runing_2 have "False" |
|
2520 apply (unfold runing_def readys_def s_RAG_def) |
|
2521 by (auto simp:eq_waiting) |
|
2522 thus ?thesis by simp |
|
2523 next |
|
2524 assume "th2' \<in> dependants (wq s) th2" |
|
2525 with eq_th12 have "th1' \<in> dependants (wq s) th2" by simp |
|
2526 hence h1: "(Th th1', Th th2) \<in> (RAG s)^+" |
|
2527 by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp) |
|
2528 from th1'_in have h2: "(Th th1', Th th1) \<in> (RAG s)^+" |
|
2529 by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp) |
|
2530 show ?thesis |
|
2531 proof(rule dchain_unique[OF h1 _ h2, symmetric]) |
|
2532 from runing_1 show "th1 \<in> readys s" by (simp add:runing_def) |
|
2533 from runing_2 show "th2 \<in> readys s" by (simp add:runing_def) |
|
2534 qed |
|
2535 qed |
|
2536 qed |
|
2537 qed |
|
2538 |
|
2539 |
|
2540 lemma "card (runing s) \<le> 1" |
|
2541 apply(subgoal_tac "finite (runing s)") |
|
2542 prefer 2 |
|
2543 apply (metis finite_nat_set_iff_bounded lessI runing_unique) |
|
2544 apply(rule ccontr) |
|
2545 apply(simp) |
|
2546 apply(case_tac "Suc (Suc 0) \<le> card (runing s)") |
|
2547 apply(subst (asm) card_le_Suc_iff) |
|
2548 apply(simp) |
|
2549 apply(auto)[1] |
|
2550 apply (metis insertCI runing_unique) |
|
2551 apply(auto) |
|
2552 done |
|
2553 |
|
2554 end |
|
2555 |
|
2556 |
3787 |
2557 lemma create_pre: |
3788 lemma create_pre: |
2558 assumes stp: "step s e" |
3789 assumes stp: "step s e" |
2559 and not_in: "th \<notin> threads s" |
3790 and not_in: "th \<notin> threads s" |
2560 and is_in: "th \<in> threads (e#s)" |
3791 and is_in: "th \<in> threads (e#s)" |
2579 case (thread_set thread) |
3810 case (thread_set thread) |
2580 with assms show ?thesis by (auto intro!:that) |
3811 with assms show ?thesis by (auto intro!:that) |
2581 qed |
3812 qed |
2582 qed |
3813 qed |
2583 |
3814 |
2584 |
3815 lemma eq_pv_children: |
2585 context valid_trace |
3816 assumes eq_pv: "cntP s th = cntV s th" |
2586 begin |
3817 shows "children (RAG s) (Th th) = {}" |
2587 |
3818 proof - |
2588 lemma cnp_cnv_eq: |
3819 from cnp_cnv_cncs and eq_pv |
2589 assumes "th \<notin> threads s" |
3820 have "cntCS s th = 0" |
2590 shows "cntP s th = cntV s th" |
3821 by (auto split:if_splits) |
2591 using assms |
3822 from this[unfolded cntCS_def holdents_alt_def] |
2592 using cnp_cnv_cncs not_thread_cncs by auto |
3823 have card_0: "card (the_cs ` children (RAG s) (Th th)) = 0" . |
|
3824 have "finite (the_cs ` children (RAG s) (Th th))" |
|
3825 by (simp add: fsbtRAGs.finite_children) |
|
3826 from card_0[unfolded card_0_eq[OF this]] |
|
3827 show ?thesis by auto |
|
3828 qed |
|
3829 |
|
3830 lemma eq_pv_holdents: |
|
3831 assumes eq_pv: "cntP s th = cntV s th" |
|
3832 shows "holdents s th = {}" |
|
3833 by (unfold holdents_alt_def eq_pv_children[OF assms], simp) |
|
3834 |
|
3835 lemma eq_pv_subtree: |
|
3836 assumes eq_pv: "cntP s th = cntV s th" |
|
3837 shows "subtree (RAG s) (Th th) = {Th th}" |
|
3838 using eq_pv_children[OF assms] |
|
3839 by (unfold subtree_children, simp) |
2593 |
3840 |
2594 end |
3841 end |
2595 |
|
2596 |
|
2597 lemma eq_RAG: |
|
2598 "RAG (wq s) = RAG s" |
|
2599 by (unfold cs_RAG_def s_RAG_def, auto) |
|
2600 |
|
2601 context valid_trace |
|
2602 begin |
|
2603 |
|
2604 lemma count_eq_dependants: |
|
2605 assumes eq_pv: "cntP s th = cntV s th" |
|
2606 shows "dependants (wq s) th = {}" |
|
2607 proof - |
|
2608 from cnp_cnv_cncs and eq_pv |
|
2609 have "cntCS s th = 0" |
|
2610 by (auto split:if_splits) |
|
2611 moreover have "finite {cs. (Cs cs, Th th) \<in> RAG s}" |
|
2612 proof - |
|
2613 from finite_holding[of th] show ?thesis |
|
2614 by (simp add:holdents_test) |
|
2615 qed |
|
2616 ultimately have h: "{cs. (Cs cs, Th th) \<in> RAG s} = {}" |
|
2617 by (unfold cntCS_def holdents_test cs_dependants_def, auto) |
|
2618 show ?thesis |
|
2619 proof(unfold cs_dependants_def) |
|
2620 { assume "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<noteq> {}" |
|
2621 then obtain th' where "(Th th', Th th) \<in> (RAG (wq s))\<^sup>+" by auto |
|
2622 hence "False" |
|
2623 proof(cases) |
|
2624 assume "(Th th', Th th) \<in> RAG (wq s)" |
|
2625 thus "False" by (auto simp:cs_RAG_def) |
|
2626 next |
|
2627 fix c |
|
2628 assume "(c, Th th) \<in> RAG (wq s)" |
|
2629 with h and eq_RAG show "False" |
|
2630 by (cases c, auto simp:cs_RAG_def) |
|
2631 qed |
|
2632 } thus "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} = {}" by auto |
|
2633 qed |
|
2634 qed |
|
2635 |
|
2636 lemma dependants_threads: |
|
2637 shows "dependants (wq s) th \<subseteq> threads s" |
|
2638 proof |
|
2639 { fix th th' |
|
2640 assume h: "th \<in> {th'a. (Th th'a, Th th') \<in> (RAG (wq s))\<^sup>+}" |
|
2641 have "Th th \<in> Domain (RAG s)" |
|
2642 proof - |
|
2643 from h obtain th' where "(Th th, Th th') \<in> (RAG (wq s))\<^sup>+" by auto |
|
2644 hence "(Th th) \<in> Domain ( (RAG (wq s))\<^sup>+)" by (auto simp:Domain_def) |
|
2645 with trancl_domain have "(Th th) \<in> Domain (RAG (wq s))" by simp |
|
2646 thus ?thesis using eq_RAG by simp |
|
2647 qed |
|
2648 from dm_RAG_threads[OF this] |
|
2649 have "th \<in> threads s" . |
|
2650 } note hh = this |
|
2651 fix th1 |
|
2652 assume "th1 \<in> dependants (wq s) th" |
|
2653 hence "th1 \<in> {th'a. (Th th'a, Th th) \<in> (RAG (wq s))\<^sup>+}" |
|
2654 by (unfold cs_dependants_def, simp) |
|
2655 from hh [OF this] show "th1 \<in> threads s" . |
|
2656 qed |
|
2657 |
|
2658 lemma finite_threads: |
|
2659 shows "finite (threads s)" |
|
2660 using vt by (induct) (auto elim: step.cases) |
|
2661 |
|
2662 end |
|
2663 |
|
2664 lemma Max_f_mono: |
|
2665 assumes seq: "A \<subseteq> B" |
|
2666 and np: "A \<noteq> {}" |
|
2667 and fnt: "finite B" |
|
2668 shows "Max (f ` A) \<le> Max (f ` B)" |
|
2669 proof(rule Max_mono) |
|
2670 from seq show "f ` A \<subseteq> f ` B" by auto |
|
2671 next |
|
2672 from np show "f ` A \<noteq> {}" by auto |
|
2673 next |
|
2674 from fnt and seq show "finite (f ` B)" by auto |
|
2675 qed |
|
2676 |
|
2677 context valid_trace |
|
2678 begin |
|
2679 |
|
2680 lemma cp_le: |
|
2681 assumes th_in: "th \<in> threads s" |
|
2682 shows "cp s th \<le> Max ((\<lambda> th. (preced th s)) ` threads s)" |
|
2683 proof(unfold cp_eq_cpreced cpreced_def cs_dependants_def) |
|
2684 show "Max ((\<lambda>th. preced th s) ` ({th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+})) |
|
2685 \<le> Max ((\<lambda>th. preced th s) ` threads s)" |
|
2686 (is "Max (?f ` ?A) \<le> Max (?f ` ?B)") |
|
2687 proof(rule Max_f_mono) |
|
2688 show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<noteq> {}" by simp |
|
2689 next |
|
2690 from finite_threads |
|
2691 show "finite (threads s)" . |
|
2692 next |
|
2693 from th_in |
|
2694 show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> threads s" |
|
2695 apply (auto simp:Domain_def) |
|
2696 apply (rule_tac dm_RAG_threads) |
|
2697 apply (unfold trancl_domain [of "RAG s", symmetric]) |
|
2698 by (unfold cs_RAG_def s_RAG_def, auto simp:Domain_def) |
|
2699 qed |
|
2700 qed |
|
2701 |
|
2702 lemma le_cp: |
|
2703 shows "preced th s \<le> cp s th" |
|
2704 proof(unfold cp_eq_cpreced preced_def cpreced_def, simp) |
|
2705 show "Prc (priority th s) (last_set th s) |
|
2706 \<le> Max (insert (Prc (priority th s) (last_set th s)) |
|
2707 ((\<lambda>th. Prc (priority th s) (last_set th s)) ` dependants (wq s) th))" |
|
2708 (is "?l \<le> Max (insert ?l ?A)") |
|
2709 proof(cases "?A = {}") |
|
2710 case False |
|
2711 have "finite ?A" (is "finite (?f ` ?B)") |
|
2712 proof - |
|
2713 have "finite ?B" |
|
2714 proof- |
|
2715 have "finite {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}" |
|
2716 proof - |
|
2717 let ?F = "\<lambda> (x, y). the_th x" |
|
2718 have "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)" |
|
2719 apply (auto simp:image_def) |
|
2720 by (rule_tac x = "(Th x, Th th)" in bexI, auto) |
|
2721 moreover have "finite \<dots>" |
|
2722 proof - |
|
2723 from finite_RAG have "finite (RAG s)" . |
|
2724 hence "finite ((RAG (wq s))\<^sup>+)" |
|
2725 apply (unfold finite_trancl) |
|
2726 by (auto simp: s_RAG_def cs_RAG_def wq_def) |
|
2727 thus ?thesis by auto |
|
2728 qed |
|
2729 ultimately show ?thesis by (auto intro:finite_subset) |
|
2730 qed |
|
2731 thus ?thesis by (simp add:cs_dependants_def) |
|
2732 qed |
|
2733 thus ?thesis by simp |
|
2734 qed |
|
2735 from Max_insert [OF this False, of ?l] show ?thesis by auto |
|
2736 next |
|
2737 case True |
|
2738 thus ?thesis by auto |
|
2739 qed |
|
2740 qed |
|
2741 |
|
2742 lemma max_cp_eq: |
|
2743 shows "Max ((cp s) ` threads s) = Max ((\<lambda> th. (preced th s)) ` threads s)" |
|
2744 (is "?l = ?r") |
|
2745 proof(cases "threads s = {}") |
|
2746 case True |
|
2747 thus ?thesis by auto |
|
2748 next |
|
2749 case False |
|
2750 have "?l \<in> ((cp s) ` threads s)" |
|
2751 proof(rule Max_in) |
|
2752 from finite_threads |
|
2753 show "finite (cp s ` threads s)" by auto |
|
2754 next |
|
2755 from False show "cp s ` threads s \<noteq> {}" by auto |
|
2756 qed |
|
2757 then obtain th |
|
2758 where th_in: "th \<in> threads s" and eq_l: "?l = cp s th" by auto |
|
2759 have "\<dots> \<le> ?r" by (rule cp_le[OF th_in]) |
|
2760 moreover have "?r \<le> cp s th" (is "Max (?f ` ?A) \<le> cp s th") |
|
2761 proof - |
|
2762 have "?r \<in> (?f ` ?A)" |
|
2763 proof(rule Max_in) |
|
2764 from finite_threads |
|
2765 show " finite ((\<lambda>th. preced th s) ` threads s)" by auto |
|
2766 next |
|
2767 from False show " (\<lambda>th. preced th s) ` threads s \<noteq> {}" by auto |
|
2768 qed |
|
2769 then obtain th' where |
|
2770 th_in': "th' \<in> ?A " and eq_r: "?r = ?f th'" by auto |
|
2771 from le_cp [of th'] eq_r |
|
2772 have "?r \<le> cp s th'" by auto |
|
2773 moreover have "\<dots> \<le> cp s th" |
|
2774 proof(fold eq_l) |
|
2775 show " cp s th' \<le> Max (cp s ` threads s)" |
|
2776 proof(rule Max_ge) |
|
2777 from th_in' show "cp s th' \<in> cp s ` threads s" |
|
2778 by auto |
|
2779 next |
|
2780 from finite_threads |
|
2781 show "finite (cp s ` threads s)" by auto |
|
2782 qed |
|
2783 qed |
|
2784 ultimately show ?thesis by auto |
|
2785 qed |
|
2786 ultimately show ?thesis using eq_l by auto |
|
2787 qed |
|
2788 |
|
2789 lemma max_cp_readys_threads_pre: |
|
2790 assumes np: "threads s \<noteq> {}" |
|
2791 shows "Max (cp s ` readys s) = Max (cp s ` threads s)" |
|
2792 proof(unfold max_cp_eq) |
|
2793 show "Max (cp s ` readys s) = Max ((\<lambda>th. preced th s) ` threads s)" |
|
2794 proof - |
|
2795 let ?p = "Max ((\<lambda>th. preced th s) ` threads s)" |
|
2796 let ?f = "(\<lambda>th. preced th s)" |
|
2797 have "?p \<in> ((\<lambda>th. preced th s) ` threads s)" |
|
2798 proof(rule Max_in) |
|
2799 from finite_threads show "finite (?f ` threads s)" by simp |
|
2800 next |
|
2801 from np show "?f ` threads s \<noteq> {}" by simp |
|
2802 qed |
|
2803 then obtain tm where tm_max: "?f tm = ?p" and tm_in: "tm \<in> threads s" |
|
2804 by (auto simp:Image_def) |
|
2805 from th_chain_to_ready [OF tm_in] |
|
2806 have "tm \<in> readys s \<or> (\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (RAG s)\<^sup>+)" . |
|
2807 thus ?thesis |
|
2808 proof |
|
2809 assume "\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (RAG s)\<^sup>+ " |
|
2810 then obtain th' where th'_in: "th' \<in> readys s" |
|
2811 and tm_chain:"(Th tm, Th th') \<in> (RAG s)\<^sup>+" by auto |
|
2812 have "cp s th' = ?f tm" |
|
2813 proof(subst cp_eq_cpreced, subst cpreced_def, rule Max_eqI) |
|
2814 from dependants_threads finite_threads |
|
2815 show "finite ((\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th'))" |
|
2816 by (auto intro:finite_subset) |
|
2817 next |
|
2818 fix p assume p_in: "p \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')" |
|
2819 from tm_max have " preced tm s = Max ((\<lambda>th. preced th s) ` threads s)" . |
|
2820 moreover have "p \<le> \<dots>" |
|
2821 proof(rule Max_ge) |
|
2822 from finite_threads |
|
2823 show "finite ((\<lambda>th. preced th s) ` threads s)" by simp |
|
2824 next |
|
2825 from p_in and th'_in and dependants_threads[of th'] |
|
2826 show "p \<in> (\<lambda>th. preced th s) ` threads s" |
|
2827 by (auto simp:readys_def) |
|
2828 qed |
|
2829 ultimately show "p \<le> preced tm s" by auto |
|
2830 next |
|
2831 show "preced tm s \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')" |
|
2832 proof - |
|
2833 from tm_chain |
|
2834 have "tm \<in> dependants (wq s) th'" |
|
2835 by (unfold cs_dependants_def s_RAG_def cs_RAG_def, auto) |
|
2836 thus ?thesis by auto |
|
2837 qed |
|
2838 qed |
|
2839 with tm_max |
|
2840 have h: "cp s th' = Max ((\<lambda>th. preced th s) ` threads s)" by simp |
|
2841 show ?thesis |
|
2842 proof (fold h, rule Max_eqI) |
|
2843 fix q |
|
2844 assume "q \<in> cp s ` readys s" |
|
2845 then obtain th1 where th1_in: "th1 \<in> readys s" |
|
2846 and eq_q: "q = cp s th1" by auto |
|
2847 show "q \<le> cp s th'" |
|
2848 apply (unfold h eq_q) |
|
2849 apply (unfold cp_eq_cpreced cpreced_def) |
|
2850 apply (rule Max_mono) |
|
2851 proof - |
|
2852 from dependants_threads [of th1] th1_in |
|
2853 show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<subseteq> |
|
2854 (\<lambda>th. preced th s) ` threads s" |
|
2855 by (auto simp:readys_def) |
|
2856 next |
|
2857 show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<noteq> {}" by simp |
|
2858 next |
|
2859 from finite_threads |
|
2860 show " finite ((\<lambda>th. preced th s) ` threads s)" by simp |
|
2861 qed |
|
2862 next |
|
2863 from finite_threads |
|
2864 show "finite (cp s ` readys s)" by (auto simp:readys_def) |
|
2865 next |
|
2866 from th'_in |
|
2867 show "cp s th' \<in> cp s ` readys s" by simp |
|
2868 qed |
|
2869 next |
|
2870 assume tm_ready: "tm \<in> readys s" |
|
2871 show ?thesis |
|
2872 proof(fold tm_max) |
|
2873 have cp_eq_p: "cp s tm = preced tm s" |
|
2874 proof(unfold cp_eq_cpreced cpreced_def, rule Max_eqI) |
|
2875 fix y |
|
2876 assume hy: "y \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm)" |
|
2877 show "y \<le> preced tm s" |
|
2878 proof - |
|
2879 { fix y' |
|
2880 assume hy' : "y' \<in> ((\<lambda>th. preced th s) ` dependants (wq s) tm)" |
|
2881 have "y' \<le> preced tm s" |
|
2882 proof(unfold tm_max, rule Max_ge) |
|
2883 from hy' dependants_threads[of tm] |
|
2884 show "y' \<in> (\<lambda>th. preced th s) ` threads s" by auto |
|
2885 next |
|
2886 from finite_threads |
|
2887 show "finite ((\<lambda>th. preced th s) ` threads s)" by simp |
|
2888 qed |
|
2889 } with hy show ?thesis by auto |
|
2890 qed |
|
2891 next |
|
2892 from dependants_threads[of tm] finite_threads |
|
2893 show "finite ((\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm))" |
|
2894 by (auto intro:finite_subset) |
|
2895 next |
|
2896 show "preced tm s \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm)" |
|
2897 by simp |
|
2898 qed |
|
2899 moreover have "Max (cp s ` readys s) = cp s tm" |
|
2900 proof(rule Max_eqI) |
|
2901 from tm_ready show "cp s tm \<in> cp s ` readys s" by simp |
|
2902 next |
|
2903 from finite_threads |
|
2904 show "finite (cp s ` readys s)" by (auto simp:readys_def) |
|
2905 next |
|
2906 fix y assume "y \<in> cp s ` readys s" |
|
2907 then obtain th1 where th1_readys: "th1 \<in> readys s" |
|
2908 and h: "y = cp s th1" by auto |
|
2909 show "y \<le> cp s tm" |
|
2910 apply(unfold cp_eq_p h) |
|
2911 apply(unfold cp_eq_cpreced cpreced_def tm_max, rule Max_mono) |
|
2912 proof - |
|
2913 from finite_threads |
|
2914 show "finite ((\<lambda>th. preced th s) ` threads s)" by simp |
|
2915 next |
|
2916 show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<noteq> {}" |
|
2917 by simp |
|
2918 next |
|
2919 from dependants_threads[of th1] th1_readys |
|
2920 show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) |
|
2921 \<subseteq> (\<lambda>th. preced th s) ` threads s" |
|
2922 by (auto simp:readys_def) |
|
2923 qed |
|
2924 qed |
|
2925 ultimately show " Max (cp s ` readys s) = preced tm s" by simp |
|
2926 qed |
|
2927 qed |
|
2928 qed |
|
2929 qed |
|
2930 |
|
2931 text {* (* ccc *) \noindent |
|
2932 Since the current precedence of the threads in ready queue will always be boosted, |
|
2933 there must be one inside it has the maximum precedence of the whole system. |
|
2934 *} |
|
2935 lemma max_cp_readys_threads: |
|
2936 shows "Max (cp s ` readys s) = Max (cp s ` threads s)" |
|
2937 proof(cases "threads s = {}") |
|
2938 case True |
|
2939 thus ?thesis |
|
2940 by (auto simp:readys_def) |
|
2941 next |
|
2942 case False |
|
2943 show ?thesis by (rule max_cp_readys_threads_pre[OF False]) |
|
2944 qed |
|
2945 |
|
2946 end |
|
2947 |
|
2948 lemma eq_holding: "holding (wq s) th cs = holding s th cs" |
|
2949 apply (unfold s_holding_def cs_holding_def wq_def, simp) |
|
2950 done |
|
2951 |
|
2952 lemma f_image_eq: |
|
2953 assumes h: "\<And> a. a \<in> A \<Longrightarrow> f a = g a" |
|
2954 shows "f ` A = g ` A" |
|
2955 proof |
|
2956 show "f ` A \<subseteq> g ` A" |
|
2957 by(rule image_subsetI, auto intro:h) |
|
2958 next |
|
2959 show "g ` A \<subseteq> f ` A" |
|
2960 by (rule image_subsetI, auto intro:h[symmetric]) |
|
2961 qed |
|
2962 |
|
2963 |
|
2964 definition detached :: "state \<Rightarrow> thread \<Rightarrow> bool" |
|
2965 where "detached s th \<equiv> (\<not>(\<exists> cs. holding s th cs)) \<and> (\<not>(\<exists>cs. waiting s th cs))" |
|
2966 |
|
2967 |
|
2968 lemma detached_test: |
|
2969 shows "detached s th = (Th th \<notin> Field (RAG s))" |
|
2970 apply(simp add: detached_def Field_def) |
|
2971 apply(simp add: s_RAG_def) |
|
2972 apply(simp add: s_holding_abv s_waiting_abv) |
|
2973 apply(simp add: Domain_iff Range_iff) |
|
2974 apply(simp add: wq_def) |
|
2975 apply(auto) |
|
2976 done |
|
2977 |
|
2978 context valid_trace |
|
2979 begin |
|
2980 |
|
2981 lemma detached_intro: |
|
2982 assumes eq_pv: "cntP s th = cntV s th" |
|
2983 shows "detached s th" |
|
2984 proof - |
|
2985 from cnp_cnv_cncs |
|
2986 have eq_cnt: "cntP s th = |
|
2987 cntV s th + (if th \<in> readys s \<or> th \<notin> threads s then cntCS s th else cntCS s th + 1)" . |
|
2988 hence cncs_zero: "cntCS s th = 0" |
|
2989 by (auto simp:eq_pv split:if_splits) |
|
2990 with eq_cnt |
|
2991 have "th \<in> readys s \<or> th \<notin> threads s" by (auto simp:eq_pv) |
|
2992 thus ?thesis |
|
2993 proof |
|
2994 assume "th \<notin> threads s" |
|
2995 with range_in dm_RAG_threads |
|
2996 show ?thesis |
|
2997 by (auto simp add: detached_def s_RAG_def s_waiting_abv s_holding_abv wq_def Domain_iff Range_iff) |
|
2998 next |
|
2999 assume "th \<in> readys s" |
|
3000 moreover have "Th th \<notin> Range (RAG s)" |
|
3001 proof - |
|
3002 from card_0_eq [OF finite_holding] and cncs_zero |
|
3003 have "holdents s th = {}" |
|
3004 by (simp add:cntCS_def) |
|
3005 thus ?thesis |
|
3006 apply(auto simp:holdents_test) |
|
3007 apply(case_tac a) |
|
3008 apply(auto simp:holdents_test s_RAG_def) |
|
3009 done |
|
3010 qed |
|
3011 ultimately show ?thesis |
|
3012 by (auto simp add: detached_def s_RAG_def s_waiting_abv s_holding_abv wq_def readys_def) |
|
3013 qed |
|
3014 qed |
|
3015 |
|
3016 lemma detached_elim: |
|
3017 assumes dtc: "detached s th" |
|
3018 shows "cntP s th = cntV s th" |
|
3019 proof - |
|
3020 from cnp_cnv_cncs |
|
3021 have eq_pv: " cntP s th = |
|
3022 cntV s th + (if th \<in> readys s \<or> th \<notin> threads s then cntCS s th else cntCS s th + 1)" . |
|
3023 have cncs_z: "cntCS s th = 0" |
|
3024 proof - |
|
3025 from dtc have "holdents s th = {}" |
|
3026 unfolding detached_def holdents_test s_RAG_def |
|
3027 by (simp add: s_waiting_abv wq_def s_holding_abv Domain_iff Range_iff) |
|
3028 thus ?thesis by (auto simp:cntCS_def) |
|
3029 qed |
|
3030 show ?thesis |
|
3031 proof(cases "th \<in> threads s") |
|
3032 case True |
|
3033 with dtc |
|
3034 have "th \<in> readys s" |
|
3035 by (unfold readys_def detached_def Field_def Domain_def Range_def, |
|
3036 auto simp:eq_waiting s_RAG_def) |
|
3037 with cncs_z and eq_pv show ?thesis by simp |
|
3038 next |
|
3039 case False |
|
3040 with cncs_z and eq_pv show ?thesis by simp |
|
3041 qed |
|
3042 qed |
|
3043 |
|
3044 lemma detached_eq: |
|
3045 shows "(detached s th) = (cntP s th = cntV s th)" |
|
3046 by (insert vt, auto intro:detached_intro detached_elim) |
|
3047 |
|
3048 end |
|
3049 |
|
3050 text {* |
|
3051 The lemmas in this .thy file are all obvious lemmas, however, they still needs to be derived |
|
3052 from the concise and miniature model of PIP given in PrioGDef.thy. |
|
3053 *} |
|
3054 |
|
3055 lemma eq_dependants: "dependants (wq s) = dependants s" |
|
3056 by (simp add: s_dependants_abv wq_def) |
|
3057 |
|
3058 lemma next_th_unique: |
|
3059 assumes nt1: "next_th s th cs th1" |
|
3060 and nt2: "next_th s th cs th2" |
|
3061 shows "th1 = th2" |
|
3062 using assms by (unfold next_th_def, auto) |
|
3063 |
|
3064 lemma birth_time_lt: "s \<noteq> [] \<Longrightarrow> last_set th s < length s" |
|
3065 apply (induct s, simp) |
|
3066 proof - |
|
3067 fix a s |
|
3068 assume ih: "s \<noteq> [] \<Longrightarrow> last_set th s < length s" |
|
3069 and eq_as: "a # s \<noteq> []" |
|
3070 show "last_set th (a # s) < length (a # s)" |
|
3071 proof(cases "s \<noteq> []") |
|
3072 case False |
|
3073 from False show ?thesis |
|
3074 by (cases a, auto simp:last_set.simps) |
|
3075 next |
|
3076 case True |
|
3077 from ih [OF True] show ?thesis |
|
3078 by (cases a, auto simp:last_set.simps) |
|
3079 qed |
|
3080 qed |
|
3081 |
|
3082 lemma th_in_ne: "th \<in> threads s \<Longrightarrow> s \<noteq> []" |
|
3083 by (induct s, auto simp:threads.simps) |
|
3084 |
|
3085 lemma preced_tm_lt: "th \<in> threads s \<Longrightarrow> preced th s = Prc x y \<Longrightarrow> y < length s" |
|
3086 apply (drule_tac th_in_ne) |
|
3087 by (unfold preced_def, auto intro: birth_time_lt) |
|
3088 |
|
3089 lemma inj_the_preced: |
|
3090 "inj_on (the_preced s) (threads s)" |
|
3091 by (metis inj_onI preced_unique the_preced_def) |
|
3092 |
|
3093 lemma tRAG_alt_def: |
|
3094 "tRAG s = {(Th th1, Th th2) | th1 th2. |
|
3095 \<exists> cs. (Th th1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th2) \<in> RAG s}" |
|
3096 by (auto simp:tRAG_def RAG_split wRAG_def hRAG_def) |
|
3097 |
|
3098 lemma tRAG_Field: |
|
3099 "Field (tRAG s) \<subseteq> Field (RAG s)" |
|
3100 by (unfold tRAG_alt_def Field_def, auto) |
|
3101 |
|
3102 lemma tRAG_ancestorsE: |
|
3103 assumes "x \<in> ancestors (tRAG s) u" |
|
3104 obtains th where "x = Th th" |
|
3105 proof - |
|
3106 from assms have "(u, x) \<in> (tRAG s)^+" |
|
3107 by (unfold ancestors_def, auto) |
|
3108 from tranclE[OF this] obtain c where "(c, x) \<in> tRAG s" by auto |
|
3109 then obtain th where "x = Th th" |
|
3110 by (unfold tRAG_alt_def, auto) |
|
3111 from that[OF this] show ?thesis . |
|
3112 qed |
|
3113 |
|
3114 lemma tRAG_mono: |
|
3115 assumes "RAG s' \<subseteq> RAG s" |
|
3116 shows "tRAG s' \<subseteq> tRAG s" |
|
3117 using assms |
|
3118 by (unfold tRAG_alt_def, auto) |
|
3119 |
|
3120 lemma holding_next_thI: |
|
3121 assumes "holding s th cs" |
|
3122 and "length (wq s cs) > 1" |
|
3123 obtains th' where "next_th s th cs th'" |
|
3124 proof - |
|
3125 from assms(1)[folded eq_holding, unfolded cs_holding_def] |
|
3126 have " th \<in> set (wq s cs) \<and> th = hd (wq s cs)" . |
|
3127 then obtain rest where h1: "wq s cs = th#rest" |
|
3128 by (cases "wq s cs", auto) |
|
3129 with assms(2) have h2: "rest \<noteq> []" by auto |
|
3130 let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)" |
|
3131 have "next_th s th cs ?th'" using h1(1) h2 |
|
3132 by (unfold next_th_def, auto) |
|
3133 from that[OF this] show ?thesis . |
|
3134 qed |
|
3135 |
|
3136 lemma RAG_tRAG_transfer: |
|
3137 assumes "vt s'" |
|
3138 assumes "RAG s = RAG s' \<union> {(Th th, Cs cs)}" |
|
3139 and "(Cs cs, Th th'') \<in> RAG s'" |
|
3140 shows "tRAG s = tRAG s' \<union> {(Th th, Th th'')}" (is "?L = ?R") |
|
3141 proof - |
|
3142 interpret vt_s': valid_trace "s'" using assms(1) |
|
3143 by (unfold_locales, simp) |
|
3144 interpret rtree: rtree "RAG s'" |
|
3145 proof |
|
3146 show "single_valued (RAG s')" |
|
3147 apply (intro_locales) |
|
3148 by (unfold single_valued_def, |
|
3149 auto intro:vt_s'.unique_RAG) |
|
3150 |
|
3151 show "acyclic (RAG s')" |
|
3152 by (rule vt_s'.acyclic_RAG) |
|
3153 qed |
|
3154 { fix n1 n2 |
|
3155 assume "(n1, n2) \<in> ?L" |
|
3156 from this[unfolded tRAG_alt_def] |
|
3157 obtain th1 th2 cs' where |
|
3158 h: "n1 = Th th1" "n2 = Th th2" |
|
3159 "(Th th1, Cs cs') \<in> RAG s" |
|
3160 "(Cs cs', Th th2) \<in> RAG s" by auto |
|
3161 from h(4) and assms(2) have cs_in: "(Cs cs', Th th2) \<in> RAG s'" by auto |
|
3162 from h(3) and assms(2) |
|
3163 have "(Th th1, Cs cs') = (Th th, Cs cs) \<or> |
|
3164 (Th th1, Cs cs') \<in> RAG s'" by auto |
|
3165 hence "(n1, n2) \<in> ?R" |
|
3166 proof |
|
3167 assume h1: "(Th th1, Cs cs') = (Th th, Cs cs)" |
|
3168 hence eq_th1: "th1 = th" by simp |
|
3169 moreover have "th2 = th''" |
|
3170 proof - |
|
3171 from h1 have "cs' = cs" by simp |
|
3172 from assms(3) cs_in[unfolded this] rtree.sgv |
|
3173 show ?thesis |
|
3174 by (unfold single_valued_def, auto) |
|
3175 qed |
|
3176 ultimately show ?thesis using h(1,2) by auto |
|
3177 next |
|
3178 assume "(Th th1, Cs cs') \<in> RAG s'" |
|
3179 with cs_in have "(Th th1, Th th2) \<in> tRAG s'" |
|
3180 by (unfold tRAG_alt_def, auto) |
|
3181 from this[folded h(1, 2)] show ?thesis by auto |
|
3182 qed |
|
3183 } moreover { |
|
3184 fix n1 n2 |
|
3185 assume "(n1, n2) \<in> ?R" |
|
3186 hence "(n1, n2) \<in>tRAG s' \<or> (n1, n2) = (Th th, Th th'')" by auto |
|
3187 hence "(n1, n2) \<in> ?L" |
|
3188 proof |
|
3189 assume "(n1, n2) \<in> tRAG s'" |
|
3190 moreover have "... \<subseteq> ?L" |
|
3191 proof(rule tRAG_mono) |
|
3192 show "RAG s' \<subseteq> RAG s" by (unfold assms(2), auto) |
|
3193 qed |
|
3194 ultimately show ?thesis by auto |
|
3195 next |
|
3196 assume eq_n: "(n1, n2) = (Th th, Th th'')" |
|
3197 from assms(2, 3) have "(Cs cs, Th th'') \<in> RAG s" by auto |
|
3198 moreover have "(Th th, Cs cs) \<in> RAG s" using assms(2) by auto |
|
3199 ultimately show ?thesis |
|
3200 by (unfold eq_n tRAG_alt_def, auto) |
|
3201 qed |
|
3202 } ultimately show ?thesis by auto |
|
3203 qed |
|
3204 |
|
3205 context valid_trace |
|
3206 begin |
|
3207 |
|
3208 lemmas RAG_tRAG_transfer = RAG_tRAG_transfer[OF vt] |
|
3209 |
|
3210 end |
|
3211 |
|
3212 lemma cp_alt_def: |
|
3213 "cp s th = |
|
3214 Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})" |
|
3215 proof - |
|
3216 have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) = |
|
3217 Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})" |
|
3218 (is "Max (_ ` ?L) = Max (_ ` ?R)") |
|
3219 proof - |
|
3220 have "?L = ?R" |
|
3221 by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def) |
|
3222 thus ?thesis by simp |
|
3223 qed |
|
3224 thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp) |
|
3225 qed |
|
3226 |
3842 |
3227 lemma cp_gen_alt_def: |
3843 lemma cp_gen_alt_def: |
3228 "cp_gen s = (Max \<circ> (\<lambda>x. (the_preced s \<circ> the_thread) ` subtree (tRAG s) x))" |
3844 "cp_gen s = (Max \<circ> (\<lambda>x. (the_preced s \<circ> the_thread) ` subtree (tRAG s) x))" |
3229 by (auto simp:cp_gen_def) |
3845 by (auto simp:cp_gen_def) |
3230 |
3846 |