PIPBasics.thy
changeset 67 25fd656667a7
parent 65 633b1fc8631b
child 68 db196b066b97
equal deleted inserted replaced
66:2af87bb52fca 67:25fd656667a7
    30    "cs \<noteq> cs' \<Longrightarrow> wq (V thread cs#s) cs' = wq s cs'"
    30    "cs \<noteq> cs' \<Longrightarrow> wq (V thread cs#s) cs' = wq s cs'"
    31   by (auto simp:wq_def Let_def cp_def split:list.splits)
    31   by (auto simp:wq_def Let_def cp_def split:list.splits)
    32 
    32 
    33 context valid_trace
    33 context valid_trace
    34 begin
    34 begin
       
    35 
       
    36 lemma actor_inv: 
       
    37   assumes "PIP s e"
       
    38   and "\<not> isCreate e"
       
    39   shows "actor e \<in> runing s"
       
    40   using assms
       
    41   by (induct, auto)
    35 
    42 
    36 lemma ind [consumes 0, case_names Nil Cons, induct type]:
    43 lemma ind [consumes 0, case_names Nil Cons, induct type]:
    37   assumes "PP []"
    44   assumes "PP []"
    38      and "(\<And>s e. valid_trace s \<Longrightarrow> valid_trace (e#s) \<Longrightarrow>
    45      and "(\<And>s e. valid_trace s \<Longrightarrow> valid_trace (e#s) \<Longrightarrow>
    39                    PP s \<Longrightarrow> PIP s e \<Longrightarrow> PP (e # s))"
    46                    PP s \<Longrightarrow> PIP s e \<Longrightarrow> PP (e # s))"
  1617   qed
  1624   qed
  1618   moreover from cs_not_in 
  1625   moreover from cs_not_in 
  1619   have "cs \<notin> (holdents (V thread cs#s) thread)" by auto
  1626   have "cs \<notin> (holdents (V thread cs#s) thread)" by auto
  1620   ultimately show ?thesis by (simp add:cntCS_def)
  1627   ultimately show ?thesis by (simp add:cntCS_def)
  1621 qed 
  1628 qed 
       
  1629 
       
  1630 lemma count_rec1 [simp]: 
       
  1631   assumes "Q e"
       
  1632   shows "count Q (e#es) = Suc (count Q es)"
       
  1633   using assms
       
  1634   by (unfold count_def, auto)
       
  1635 
       
  1636 lemma count_rec2 [simp]: 
       
  1637   assumes "\<not>Q e"
       
  1638   shows "count Q (e#es) = (count Q es)"
       
  1639   using assms
       
  1640   by (unfold count_def, auto)
       
  1641 
       
  1642 lemma count_rec3 [simp]: 
       
  1643   shows "count Q [] =  0"
       
  1644   by (unfold count_def, auto)
       
  1645   
       
  1646 lemma cntP_diff_inv:
       
  1647   assumes "cntP (e#s) th \<noteq> cntP s th"
       
  1648   shows "isP e \<and> actor e = th"
       
  1649 proof(cases e)
       
  1650   case (P th' pty)
       
  1651   show ?thesis
       
  1652   by (cases "(\<lambda>e. \<exists>cs. e = P th cs) (P th' pty)", 
       
  1653         insert assms P, auto simp:cntP_def)
       
  1654 qed (insert assms, auto simp:cntP_def)
       
  1655 
       
  1656 lemma isP_E:
       
  1657   assumes "isP e"
       
  1658   obtains cs where "e = P (actor e) cs"
       
  1659   using assms by (cases e, auto)
       
  1660 
       
  1661 lemma isV_E:
       
  1662   assumes "isV e"
       
  1663   obtains cs where "e = V (actor e) cs"
       
  1664   using assms by (cases e, auto) (* ccc *)
       
  1665 
       
  1666 lemma cntV_diff_inv:
       
  1667   assumes "cntV (e#s) th \<noteq> cntV s th"
       
  1668   shows "isV e \<and> actor e = th"
       
  1669 proof(cases e)
       
  1670   case (V th' pty)
       
  1671   show ?thesis
       
  1672   by (cases "(\<lambda>e. \<exists>cs. e = V th cs) (V th' pty)", 
       
  1673         insert assms V, auto simp:cntV_def)
       
  1674 qed (insert assms, auto simp:cntV_def)
  1622 
  1675 
  1623 context valid_trace
  1676 context valid_trace
  1624 begin
  1677 begin
  1625 
  1678 
  1626 text {* (* ddd *) \noindent
  1679 text {* (* ddd *) \noindent