Moment.thy
changeset 71 04caf0ccb3ae
parent 70 92ca2410b3d9
child 72 3fa70b12c117
equal deleted inserted replaced
70:92ca2410b3d9 71:04caf0ccb3ae
     3 begin
     3 begin
     4 
     4 
     5 definition moment :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
     5 definition moment :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
     6 where "moment n s = rev (take n (rev s))"
     6 where "moment n s = rev (take n (rev s))"
     7 
     7 
     8 definition restm :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
       
     9 where "restm n s = rev (drop n (rev s))"
       
    10 
       
    11 value "moment 3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9::int]"
     8 value "moment 3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9::int]"
    12 value "moment 2 [5, 4, 3, 2, 1, 0::int]"
     9 value "moment 2 [5, 4, 3, 2, 1, 0::int]"
    13 
    10 
    14 value "restm 3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9::int]"
    11 (*
    15 
       
    16 lemma moment_restm_s: "(restm n s) @ (moment n s) = s"
       
    17   unfolding restm_def moment_def
       
    18 by (metis append_take_drop_id rev_append rev_rev_ident)
       
    19 
       
    20 lemma length_moment_le:
    12 lemma length_moment_le:
    21   assumes le_k: "k \<le> length s"
    13   assumes le_k: "k \<le> length s"
    22   shows "length (moment k s) = k"
    14   shows "length (moment k s) = k"
    23 using le_k unfolding moment_def by auto
    15 using le_k unfolding moment_def by auto
       
    16 *)
    24 
    17 
       
    18 (*
    25 lemma length_moment_ge:
    19 lemma length_moment_ge:
    26   assumes le_k: "length s \<le> k"
    20   assumes le_k: "length s \<le> k"
    27   shows "length (moment k s) = (length s)"
    21   shows "length (moment k s) = (length s)"
    28 using assms unfolding moment_def by simp
    22 using assms unfolding moment_def by simp
       
    23 *)
    29 
    24 
    30 lemma moment_app [simp]:
    25 lemma moment_app [simp]:
    31   assumes ile: "i \<le> length s"
    26   assumes ile: "i \<le> length s"
    32   shows "moment i (s' @ s) = moment i s"
    27   shows "moment i (s' @ s) = moment i s"
    33 using assms unfolding moment_def by simp
    28 using assms unfolding moment_def by simp
   146   from p_split_gen [of Q s 0, OF qs this]
   141   from p_split_gen [of Q s 0, OF qs this]
   147   show "(\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
   142   show "(\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
   148     by auto
   143     by auto
   149 qed
   144 qed
   150 
   145 
   151 lemma moment_plus_split:
   146 lemma moment_Suc_tl:
   152   shows "moment (m + i) s = moment m (restm i s) @ moment i s"
   147   assumes "Suc i \<le> length s"
   153 unfolding moment_def restm_def
   148   shows "tl (moment (Suc i) s) = moment i s"
   154 by (metis add.commute rev_append rev_rev_ident take_add)
   149   using assms unfolding moment_def
       
   150 sorry
   155 
   151 
   156 lemma moment_prefix: 
   152 
   157   "(moment i t @ s) = moment (i + length s) (t @ s)"
   153 lemma moment_plus:
       
   154   assumes "Suc i \<le> length s"
       
   155   shows "(moment (Suc i) s) = (hd (moment (Suc i) s)) # (moment i s)"
   158 proof -
   156 proof -
   159   from moment_plus_split [of i "length s" "t@s"]
   157   have "(moment (Suc i) s) \<noteq> []"
   160   have " moment (i + length s) (t @ s) = moment i (restm (length s) (t @ s)) @ moment (length s) (t @ s)"
   158   using assms by (auto simp add: moment_def)
       
   159   hence "(moment (Suc i) s) = (hd (moment (Suc i) s)) #  tl (moment (Suc i) s)"
   161     by auto
   160     by auto
   162   have "moment (i + length s) (t @ s) = moment i t @ moment (length s) (t @ s)" 
   161   with moment_Suc_tl[OF assms]
   163     by (simp add: moment_def)
   162   show ?thesis by metis
   164   with moment_app show ?thesis by auto
       
   165 qed
       
   166 
       
   167 lemma moment_plus: 
       
   168   "Suc i \<le> length s \<Longrightarrow> moment (Suc i) s = (hd (moment (Suc i) s)) # (moment i s)"
       
   169 proof(induct s, simp+)
       
   170   fix a s
       
   171   assume ih: "Suc i \<le> length s \<Longrightarrow> moment (Suc i) s = hd (moment (Suc i) s) # moment i s"
       
   172     and le_i: "i \<le> length s"
       
   173   show "moment (Suc i) (a # s) = hd (moment (Suc i) (a # s)) # moment i (a # s)"
       
   174   proof(cases "i= length s")
       
   175     case True
       
   176     hence "Suc i = length (a#s)" by simp
       
   177     with moment_eq have "moment (Suc i) (a#s) = a#s" by auto
       
   178     moreover have "moment i (a#s) = s"
       
   179     proof -
       
   180       from moment_app [OF le_i, of "[a]"]
       
   181       and True show ?thesis by simp
       
   182     qed
       
   183     ultimately show ?thesis by auto
       
   184   next
       
   185     case False
       
   186     from False and le_i have lti: "i < length s" by arith
       
   187     hence les_i: "Suc i \<le> length s" by arith
       
   188     show ?thesis 
       
   189     proof -
       
   190       from moment_app [OF les_i, of "[a]"]
       
   191       have "moment (Suc i) (a # s) = moment (Suc i) s" by simp
       
   192       moreover have "moment i (a#s) = moment i s" 
       
   193       proof -
       
   194         from lti have "i \<le> length s" by simp
       
   195         from moment_app [OF this, of "[a]"] show ?thesis by simp
       
   196       qed
       
   197       moreover note ih [OF les_i]
       
   198       ultimately show ?thesis by auto
       
   199     qed
       
   200   qed
       
   201 qed
   163 qed
   202 
   164 
   203 end
   165 end
   204 
   166