changeset 62 | 031d2ae9c9b8 |
parent 61 | f8194fd6214f |
child 63 | b620a2a0806a |
61:f8194fd6214f | 62:031d2ae9c9b8 |
---|---|
4 *} |
4 *} |
5 theory CpsG |
5 theory CpsG |
6 imports PrioG Max RTree |
6 imports PrioG Max RTree |
7 begin |
7 begin |
8 |
8 |
9 text {* @{text "the_preced"} is also the same as @{text "preced"}, the only |
|
10 difference is the order of arguemts. *} |
|
9 definition "the_preced s th = preced th s" |
11 definition "the_preced s th = preced th s" |
10 |
12 |
13 text {* @{term "the_thread"} extracts thread out of RAG node. *} |
|
11 fun the_thread :: "node \<Rightarrow> thread" where |
14 fun the_thread :: "node \<Rightarrow> thread" where |
12 "the_thread (Th th) = th" |
15 "the_thread (Th th) = th" |
13 |
16 |
17 text {* The following @{text "wRAG"} is the waiting sub-graph of @{text "RAG"}. *} |
|
14 definition "wRAG (s::state) = {(Th th, Cs cs) | th cs. waiting s th cs}" |
18 definition "wRAG (s::state) = {(Th th, Cs cs) | th cs. waiting s th cs}" |
15 |
19 |
20 text {* The following @{text "hRAG"} is the holding sub-graph of @{text "RAG"}. *} |
|
16 definition "hRAG (s::state) = {(Cs cs, Th th) | th cs. holding s th cs}" |
21 definition "hRAG (s::state) = {(Cs cs, Th th) | th cs. holding s th cs}" |
17 |
22 |
18 definition "tRAG s = wRAG s O hRAG s" |
23 text {* The following lemma splits @{term "RAG"} graph into the above two sub-graphs. *} |
19 |
|
20 definition "cp_gen s x = |
|
21 Max ((the_preced s \<circ> the_thread) ` subtree (tRAG s) x)" |
|
22 (* ccc *) |
|
23 |
|
24 lemma RAG_split: "RAG s = (wRAG s \<union> hRAG s)" |
24 lemma RAG_split: "RAG s = (wRAG s \<union> hRAG s)" |
25 by (unfold s_RAG_abv wRAG_def hRAG_def s_waiting_abv |
25 by (unfold s_RAG_abv wRAG_def hRAG_def s_waiting_abv |
26 s_holding_abv cs_RAG_def, auto) |
26 s_holding_abv cs_RAG_def, auto) |
27 |
|
28 text {* |
|
29 The following @{text "tRAG"} is the thread-graph derived from @{term "RAG"}. |
|
30 It characterizes the dependency between threads when calculating current |
|
31 precedences. It is defined as the composition of the above two sub-graphs, |
|
32 names @{term "wRAG"} and @{term "hRAG"}. |
|
33 *} |
|
34 definition "tRAG s = wRAG s O hRAG s" |
|
35 |
|
36 (* ccc *) |
|
37 |
|
38 definition "cp_gen s x = |
|
39 Max ((the_preced s \<circ> the_thread) ` subtree (tRAG s) x)" |
|
27 |
40 |
28 lemma tRAG_alt_def: |
41 lemma tRAG_alt_def: |
29 "tRAG s = {(Th th1, Th th2) | th1 th2. |
42 "tRAG s = {(Th th1, Th th2) | th1 th2. |
30 \<exists> cs. (Th th1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th2) \<in> RAG s}" |
43 \<exists> cs. (Th th1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th2) \<in> RAG s}" |
31 by (auto simp:tRAG_def RAG_split wRAG_def hRAG_def) |
44 by (auto simp:tRAG_def RAG_split wRAG_def hRAG_def) |
361 from finite_RAG[OF vt] show "finite (RAG s)" . |
374 from finite_RAG[OF vt] show "finite (RAG s)" . |
362 next |
375 next |
363 from acyclic_RAG[OF vt] show "acyclic (RAG s)" . |
376 from acyclic_RAG[OF vt] show "acyclic (RAG s)" . |
364 qed |
377 qed |
365 |
378 |
366 end |
|
367 |
|
368 context valid_trace |
|
369 begin |
|
370 |
|
371 lemma sgv_wRAG: "single_valued (wRAG s)" |
379 lemma sgv_wRAG: "single_valued (wRAG s)" |
372 using waiting_unique[OF vt] |
380 using waiting_unique[OF vt] |
373 by (unfold single_valued_def wRAG_def, auto) |
381 by (unfold single_valued_def wRAG_def, auto) |
374 |
382 |
375 lemma sgv_hRAG: "single_valued (hRAG s)" |
383 lemma sgv_hRAG: "single_valued (hRAG s)" |
393 using unique_RAG[OF vt] by (auto simp:single_valued_def) |
401 using unique_RAG[OF vt] by (auto simp:single_valued_def) |
394 |
402 |
395 lemma rtree_RAG: "rtree (RAG s)" |
403 lemma rtree_RAG: "rtree (RAG s)" |
396 using sgv_RAG acyclic_RAG[OF vt] |
404 using sgv_RAG acyclic_RAG[OF vt] |
397 by (unfold rtree_def rtree_axioms_def sgv_def, auto) |
405 by (unfold rtree_def rtree_axioms_def sgv_def, auto) |
398 |
|
399 end |
406 end |
407 |
|
408 |
|
409 sublocale valid_trace < rtree_RAG: rtree "RAG s" |
|
410 proof |
|
411 show "single_valued (RAG s)" |
|
412 apply (intro_locales) |
|
413 by (unfold single_valued_def, |
|
414 auto intro:unique_RAG[OF vt]) |
|
415 |
|
416 show "acyclic (RAG s)" |
|
417 by (rule acyclic_RAG[OF vt]) |
|
418 qed |
|
400 |
419 |
401 sublocale valid_trace < rtree_s: rtree "tRAG s" |
420 sublocale valid_trace < rtree_s: rtree "tRAG s" |
402 proof(unfold_locales) |
421 proof(unfold_locales) |
403 from sgv_tRAG show "single_valued (tRAG s)" . |
422 from sgv_tRAG show "single_valued (tRAG s)" . |
404 next |
423 next |
475 have "?R = Max (insert y A)" by simp |
494 have "?R = Max (insert y A)" by simp |
476 also from assms have "... = ?L" |
495 also from assms have "... = ?L" |
477 by (subst Max.insert, simp+) |
496 by (subst Max.insert, simp+) |
478 finally show ?thesis by simp |
497 finally show ?thesis by simp |
479 qed |
498 qed |
480 |
|
481 |
499 |
482 context valid_trace |
500 context valid_trace |
483 begin |
501 begin |
484 |
502 |
485 (* ddd *) |
503 (* ddd *) |
558 qed |
576 qed |
559 qed |
577 qed |
560 |
578 |
561 end |
579 end |
562 |
580 |
563 (* ccc *) |
581 (* keep *) |
564 |
|
565 |
|
566 |
|
567 (* obvious lemma *) |
|
568 |
|
569 lemma wf_RAG: |
|
570 assumes vt: "vt s" |
|
571 shows "wf (RAG s)" |
|
572 proof(rule finite_acyclic_wf) |
|
573 from finite_RAG[OF vt] show "finite (RAG s)" . |
|
574 next |
|
575 from acyclic_RAG[OF vt] show "acyclic (RAG s)" . |
|
576 qed |
|
577 |
|
578 definition child :: "state \<Rightarrow> (node \<times> node) set" |
|
579 where "child s \<equiv> |
|
580 {(Th th', Th th) | th th'. \<exists>cs. (Th th', Cs cs) \<in> RAG s \<and> (Cs cs, Th th) \<in> RAG s}" |
|
581 |
|
582 definition children :: "state \<Rightarrow> thread \<Rightarrow> thread set" |
|
583 where "children s th \<equiv> {th'. (Th th', Th th) \<in> child s}" |
|
584 |
|
585 lemma children_def2: |
|
586 "children s th \<equiv> {th'. \<exists> cs. (Th th', Cs cs) \<in> RAG s \<and> (Cs cs, Th th) \<in> RAG s}" |
|
587 unfolding child_def children_def by simp |
|
588 |
|
589 lemma children_dependants: |
|
590 "children s th \<subseteq> dependants (wq s) th" |
|
591 unfolding children_def2 |
|
592 unfolding cs_dependants_def |
|
593 by (auto simp add: eq_RAG) |
|
594 |
|
595 lemma child_unique: |
|
596 assumes vt: "vt s" |
|
597 and ch1: "(Th th, Th th1) \<in> child s" |
|
598 and ch2: "(Th th, Th th2) \<in> child s" |
|
599 shows "th1 = th2" |
|
600 using ch1 ch2 |
|
601 proof(unfold child_def, clarsimp) |
|
602 fix cs csa |
|
603 assume h1: "(Th th, Cs cs) \<in> RAG s" |
|
604 and h2: "(Cs cs, Th th1) \<in> RAG s" |
|
605 and h3: "(Th th, Cs csa) \<in> RAG s" |
|
606 and h4: "(Cs csa, Th th2) \<in> RAG s" |
|
607 from unique_RAG[OF vt h1 h3] have "cs = csa" by simp |
|
608 with h4 have "(Cs cs, Th th2) \<in> RAG s" by simp |
|
609 from unique_RAG[OF vt h2 this] |
|
610 show "th1 = th2" by simp |
|
611 qed |
|
612 |
|
613 lemma RAG_children: |
|
614 assumes h: "(Th th1, Th th2) \<in> (RAG s)^+" |
|
615 shows "th1 \<in> children s th2 \<or> (\<exists> th3. th3 \<in> children s th2 \<and> (Th th1, Th th3) \<in> (RAG s)^+)" |
|
616 proof - |
|
617 from h show ?thesis |
|
618 proof(induct rule: tranclE) |
|
619 fix c th2 |
|
620 assume h1: "(Th th1, c) \<in> (RAG s)\<^sup>+" |
|
621 and h2: "(c, Th th2) \<in> RAG s" |
|
622 from h2 obtain cs where eq_c: "c = Cs cs" |
|
623 by (case_tac c, auto simp:s_RAG_def) |
|
624 show "th1 \<in> children s th2 \<or> (\<exists>th3. th3 \<in> children s th2 \<and> (Th th1, Th th3) \<in> (RAG s)\<^sup>+)" |
|
625 proof(rule tranclE[OF h1]) |
|
626 fix ca |
|
627 assume h3: "(Th th1, ca) \<in> (RAG s)\<^sup>+" |
|
628 and h4: "(ca, c) \<in> RAG s" |
|
629 show "th1 \<in> children s th2 \<or> (\<exists>th3. th3 \<in> children s th2 \<and> (Th th1, Th th3) \<in> (RAG s)\<^sup>+)" |
|
630 proof - |
|
631 from eq_c and h4 obtain th3 where eq_ca: "ca = Th th3" |
|
632 by (case_tac ca, auto simp:s_RAG_def) |
|
633 from eq_ca h4 h2 eq_c |
|
634 have "th3 \<in> children s th2" by (auto simp:children_def child_def) |
|
635 moreover from h3 eq_ca have "(Th th1, Th th3) \<in> (RAG s)\<^sup>+" by simp |
|
636 ultimately show ?thesis by auto |
|
637 qed |
|
638 next |
|
639 assume "(Th th1, c) \<in> RAG s" |
|
640 with h2 eq_c |
|
641 have "th1 \<in> children s th2" |
|
642 by (auto simp:children_def child_def) |
|
643 thus ?thesis by auto |
|
644 qed |
|
645 next |
|
646 assume "(Th th1, Th th2) \<in> RAG s" |
|
647 thus ?thesis |
|
648 by (auto simp:s_RAG_def) |
|
649 qed |
|
650 qed |
|
651 |
|
652 lemma sub_child: "child s \<subseteq> (RAG s)^+" |
|
653 by (unfold child_def, auto) |
|
654 |
|
655 lemma wf_child: |
|
656 assumes vt: "vt s" |
|
657 shows "wf (child s)" |
|
658 apply(rule wf_subset) |
|
659 apply(rule wf_trancl[OF wf_RAG[OF vt]]) |
|
660 apply(rule sub_child) |
|
661 done |
|
662 |
|
663 lemma RAG_child_pre: |
|
664 assumes vt: "vt s" |
|
665 shows |
|
666 "(Th th, n) \<in> (RAG s)^+ \<longrightarrow> (\<forall> th'. n = (Th th') \<longrightarrow> (Th th, Th th') \<in> (child s)^+)" (is "?P n") |
|
667 proof - |
|
668 from wf_trancl[OF wf_RAG[OF vt]] |
|
669 have wf: "wf ((RAG s)^+)" . |
|
670 show ?thesis |
|
671 proof(rule wf_induct[OF wf, of ?P], clarsimp) |
|
672 fix th' |
|
673 assume ih[rule_format]: "\<forall>y. (y, Th th') \<in> (RAG s)\<^sup>+ \<longrightarrow> |
|
674 (Th th, y) \<in> (RAG s)\<^sup>+ \<longrightarrow> (\<forall>th'. y = Th th' \<longrightarrow> (Th th, Th th') \<in> (child s)\<^sup>+)" |
|
675 and h: "(Th th, Th th') \<in> (RAG s)\<^sup>+" |
|
676 show "(Th th, Th th') \<in> (child s)\<^sup>+" |
|
677 proof - |
|
678 from RAG_children[OF h] |
|
679 have "th \<in> children s th' \<or> (\<exists>th3. th3 \<in> children s th' \<and> (Th th, Th th3) \<in> (RAG s)\<^sup>+)" . |
|
680 thus ?thesis |
|
681 proof |
|
682 assume "th \<in> children s th'" |
|
683 thus "(Th th, Th th') \<in> (child s)\<^sup>+" by (auto simp:children_def) |
|
684 next |
|
685 assume "\<exists>th3. th3 \<in> children s th' \<and> (Th th, Th th3) \<in> (RAG s)\<^sup>+" |
|
686 then obtain th3 where th3_in: "th3 \<in> children s th'" |
|
687 and th_dp: "(Th th, Th th3) \<in> (RAG s)\<^sup>+" by auto |
|
688 from th3_in have "(Th th3, Th th') \<in> (RAG s)^+" by (auto simp:children_def child_def) |
|
689 from ih[OF this th_dp, of th3] have "(Th th, Th th3) \<in> (child s)\<^sup>+" by simp |
|
690 with th3_in show "(Th th, Th th') \<in> (child s)\<^sup>+" by (auto simp:children_def) |
|
691 qed |
|
692 qed |
|
693 qed |
|
694 qed |
|
695 |
|
696 lemma RAG_child: "\<lbrakk>vt s; (Th th, Th th') \<in> (RAG s)^+\<rbrakk> \<Longrightarrow> (Th th, Th th') \<in> (child s)^+" |
|
697 by (insert RAG_child_pre, auto) |
|
698 |
|
699 lemma child_RAG_p: |
|
700 assumes "(n1, n2) \<in> (child s)^+" |
|
701 shows "(n1, n2) \<in> (RAG s)^+" |
|
702 proof - |
|
703 from assms show ?thesis |
|
704 proof(induct) |
|
705 case (base y) |
|
706 with sub_child show ?case by auto |
|
707 next |
|
708 case (step y z) |
|
709 assume "(y, z) \<in> child s" |
|
710 with sub_child have "(y, z) \<in> (RAG s)^+" by auto |
|
711 moreover have "(n1, y) \<in> (RAG s)^+" by fact |
|
712 ultimately show ?case by auto |
|
713 qed |
|
714 qed |
|
715 |
|
716 text {* (* ddd *) |
|
717 *} |
|
718 lemma child_RAG_eq: |
|
719 assumes vt: "vt s" |
|
720 shows "(Th th1, Th th2) \<in> (child s)^+ \<longleftrightarrow> (Th th1, Th th2) \<in> (RAG s)^+" |
|
721 by (auto intro: RAG_child[OF vt] child_RAG_p) |
|
722 |
|
723 text {* (* ddd *) |
|
724 *} |
|
725 lemma children_no_dep: |
|
726 fixes s th th1 th2 th3 |
|
727 assumes vt: "vt s" |
|
728 and ch1: "(Th th1, Th th) \<in> child s" |
|
729 and ch2: "(Th th2, Th th) \<in> child s" |
|
730 and ch3: "(Th th1, Th th2) \<in> (RAG s)^+" |
|
731 shows "False" |
|
732 proof - |
|
733 from RAG_child[OF vt ch3] |
|
734 have "(Th th1, Th th2) \<in> (child s)\<^sup>+" . |
|
735 thus ?thesis |
|
736 proof(rule converse_tranclE) |
|
737 assume "(Th th1, Th th2) \<in> child s" |
|
738 from child_unique[OF vt ch1 this] have "th = th2" by simp |
|
739 with ch2 have "(Th th2, Th th2) \<in> child s" by simp |
|
740 with wf_child[OF vt] show ?thesis by auto |
|
741 next |
|
742 fix c |
|
743 assume h1: "(Th th1, c) \<in> child s" |
|
744 and h2: "(c, Th th2) \<in> (child s)\<^sup>+" |
|
745 from h1 obtain th3 where eq_c: "c = Th th3" by (unfold child_def, auto) |
|
746 with h1 have "(Th th1, Th th3) \<in> child s" by simp |
|
747 from child_unique[OF vt ch1 this] have eq_th3: "th3 = th" by simp |
|
748 with eq_c and h2 have "(Th th, Th th2) \<in> (child s)\<^sup>+" by simp |
|
749 with ch2 have "(Th th, Th th) \<in> (child s)\<^sup>+" by auto |
|
750 moreover have "wf ((child s)\<^sup>+)" |
|
751 proof(rule wf_trancl) |
|
752 from wf_child[OF vt] show "wf (child s)" . |
|
753 qed |
|
754 ultimately show False by auto |
|
755 qed |
|
756 qed |
|
757 |
|
758 text {* (* ddd *) |
|
759 *} |
|
760 lemma unique_RAG_p: |
|
761 assumes vt: "vt s" |
|
762 and dp1: "(n, n1) \<in> (RAG s)^+" |
|
763 and dp2: "(n, n2) \<in> (RAG s)^+" |
|
764 and neq: "n1 \<noteq> n2" |
|
765 shows "(n1, n2) \<in> (RAG s)^+ \<or> (n2, n1) \<in> (RAG s)^+" |
|
766 proof(rule unique_chain [OF _ dp1 dp2 neq]) |
|
767 from unique_RAG[OF vt] |
|
768 show "\<And>a b c. \<lbrakk>(a, b) \<in> RAG s; (a, c) \<in> RAG s\<rbrakk> \<Longrightarrow> b = c" by auto |
|
769 qed |
|
770 |
|
771 text {* (* ddd *) |
|
772 *} |
|
773 lemma dependants_child_unique: |
|
774 fixes s th th1 th2 th3 |
|
775 assumes vt: "vt s" |
|
776 and ch1: "(Th th1, Th th) \<in> child s" |
|
777 and ch2: "(Th th2, Th th) \<in> child s" |
|
778 and dp1: "th3 \<in> dependants s th1" |
|
779 and dp2: "th3 \<in> dependants s th2" |
|
780 shows "th1 = th2" |
|
781 proof - |
|
782 { assume neq: "th1 \<noteq> th2" |
|
783 from dp1 have dp1: "(Th th3, Th th1) \<in> (RAG s)^+" |
|
784 by (simp add:s_dependants_def eq_RAG) |
|
785 from dp2 have dp2: "(Th th3, Th th2) \<in> (RAG s)^+" |
|
786 by (simp add:s_dependants_def eq_RAG) |
|
787 from unique_RAG_p[OF vt dp1 dp2] and neq |
|
788 have "(Th th1, Th th2) \<in> (RAG s)\<^sup>+ \<or> (Th th2, Th th1) \<in> (RAG s)\<^sup>+" by auto |
|
789 hence False |
|
790 proof |
|
791 assume "(Th th1, Th th2) \<in> (RAG s)\<^sup>+ " |
|
792 from children_no_dep[OF vt ch1 ch2 this] show ?thesis . |
|
793 next |
|
794 assume " (Th th2, Th th1) \<in> (RAG s)\<^sup>+" |
|
795 from children_no_dep[OF vt ch2 ch1 this] show ?thesis . |
|
796 qed |
|
797 } thus ?thesis by auto |
|
798 qed |
|
799 |
|
800 lemma RAG_plus_elim: |
|
801 assumes "vt s" |
|
802 fixes x |
|
803 assumes "(Th x, Th th) \<in> (RAG (wq s))\<^sup>+" |
|
804 shows "\<exists>th'\<in>children s th. x = th' \<or> (Th x, Th th') \<in> (RAG (wq s))\<^sup>+" |
|
805 using assms(2)[unfolded eq_RAG, folded child_RAG_eq[OF `vt s`]] |
|
806 apply (unfold children_def) |
|
807 by (metis assms(2) children_def RAG_children eq_RAG) |
|
808 |
|
809 text {* (* ddd *) |
|
810 *} |
|
811 lemma dependants_expand: |
|
812 assumes "vt s" |
|
813 shows "dependants (wq s) th = (children s th) \<union> (\<Union>((dependants (wq s)) ` children s th))" |
|
814 apply(simp add: image_def) |
|
815 unfolding cs_dependants_def |
|
816 apply(auto) |
|
817 apply (metis assms RAG_plus_elim mem_Collect_eq) |
|
818 apply (metis child_RAG_p children_def eq_RAG mem_Collect_eq r_into_trancl') |
|
819 by (metis assms child_RAG_eq children_def eq_RAG mem_Collect_eq trancl.trancl_into_trancl) |
|
820 |
|
821 lemma finite_children: |
|
822 assumes "vt s" |
|
823 shows "finite (children s th)" |
|
824 using children_dependants dependants_threads[OF assms] finite_threads[OF assms] |
|
825 by (metis rev_finite_subset) |
|
826 |
|
827 lemma finite_dependants: |
|
828 assumes "vt s" |
|
829 shows "finite (dependants (wq s) th')" |
|
830 using dependants_threads[OF assms] finite_threads[OF assms] |
|
831 by (metis rev_finite_subset) |
|
832 |
|
833 abbreviation |
|
834 "preceds s ths \<equiv> {preced th s| th. th \<in> ths}" |
|
835 |
|
836 abbreviation |
|
837 "cpreceds s ths \<equiv> (cp s) ` ths" |
|
838 |
|
839 lemma Un_compr: |
|
840 "{f th | th. R th \<or> Q th} = ({f th | th. R th} \<union> {f th' | th'. Q th'})" |
|
841 by auto |
|
842 |
|
843 lemma in_disj: |
|
844 shows "x \<in> A \<or> (\<exists>y \<in> A. x \<in> Q y) \<longleftrightarrow> (\<exists>y \<in> A. x = y \<or> x \<in> Q y)" |
|
845 by metis |
|
846 |
|
847 lemma UN_exists: |
|
848 shows "(\<Union>x \<in> A. {f y | y. Q y x}) = ({f y | y. (\<exists>x \<in> A. Q y x)})" |
|
849 by auto |
|
850 |
|
851 text {* (* ddd *) |
|
852 This is the recursive equation used to compute the current precedence of |
|
853 a thread (the @{text "th"}) here. |
|
854 *} |
|
855 lemma cp_rec: |
|
856 fixes s th |
|
857 assumes vt: "vt s" |
|
858 shows "cp s th = Max ({preced th s} \<union> (cp s ` children s th))" |
|
859 proof(cases "children s th = {}") |
|
860 case True |
|
861 show ?thesis |
|
862 unfolding cp_eq_cpreced cpreced_def |
|
863 by (subst dependants_expand[OF `vt s`]) (simp add: True) |
|
864 next |
|
865 case False |
|
866 show ?thesis (is "?LHS = ?RHS") |
|
867 proof - |
|
868 have eq_cp: "cp s = (\<lambda>th. Max (preceds s ({th} \<union> dependants (wq s) th)))" |
|
869 by (simp add: fun_eq_iff cp_eq_cpreced cpreced_def Un_compr image_Collect[symmetric]) |
|
870 |
|
871 have not_emptyness_facts[simp]: |
|
872 "dependants (wq s) th \<noteq> {}" "children s th \<noteq> {}" |
|
873 using False dependants_expand[OF assms] by(auto simp only: Un_empty) |
|
874 |
|
875 have finiteness_facts[simp]: |
|
876 "\<And>th. finite (dependants (wq s) th)" "\<And>th. finite (children s th)" |
|
877 by (simp_all add: finite_dependants[OF `vt s`] finite_children[OF `vt s`]) |
|
878 |
|
879 (* expanding definition *) |
|
880 have "?LHS = Max ({preced th s} \<union> preceds s (dependants (wq s) th))" |
|
881 unfolding eq_cp by (simp add: Un_compr) |
|
882 |
|
883 (* moving Max in *) |
|
884 also have "\<dots> = max (Max {preced th s}) (Max (preceds s (dependants (wq s) th)))" |
|
885 by (simp add: Max_Un) |
|
886 |
|
887 (* expanding dependants *) |
|
888 also have "\<dots> = max (Max {preced th s}) |
|
889 (Max (preceds s (children s th \<union> \<Union>(dependants (wq s) ` children s th))))" |
|
890 by (subst dependants_expand[OF `vt s`]) (simp) |
|
891 |
|
892 (* moving out big Union *) |
|
893 also have "\<dots> = max (Max {preced th s}) |
|
894 (Max (preceds s (\<Union> ({children s th} \<union> (dependants (wq s) ` children s th)))))" |
|
895 by simp |
|
896 |
|
897 (* moving in small union *) |
|
898 also have "\<dots> = max (Max {preced th s}) |
|
899 (Max (preceds s (\<Union> ((\<lambda>th. {th} \<union> (dependants (wq s) th)) ` children s th))))" |
|
900 by (simp add: in_disj) |
|
901 |
|
902 (* moving in preceds *) |
|
903 also have "\<dots> = max (Max {preced th s}) |
|
904 (Max (\<Union> ((\<lambda>th. preceds s ({th} \<union> (dependants (wq s) th))) ` children s th)))" |
|
905 by (simp add: UN_exists) |
|
906 |
|
907 (* moving in Max *) |
|
908 also have "\<dots> = max (Max {preced th s}) |
|
909 (Max ((\<lambda>th. Max (preceds s ({th} \<union> (dependants (wq s) th)))) ` children s th))" |
|
910 by (subst Max_Union) (auto simp add: image_image) |
|
911 |
|
912 (* folding cp + moving out Max *) |
|
913 also have "\<dots> = ?RHS" |
|
914 unfolding eq_cp by (simp add: Max_insert) |
|
915 |
|
916 finally show "?LHS = ?RHS" . |
|
917 qed |
|
918 qed |
|
919 |
|
920 lemma next_th_holding: |
582 lemma next_th_holding: |
921 assumes vt: "vt s" |
583 assumes vt: "vt s" |
922 and nxt: "next_th s th cs th'" |
584 and nxt: "next_th s th cs th'" |
923 shows "holding (wq s) th cs" |
585 shows "holding (wq s) th cs" |
924 proof - |
586 proof - |
1004 defines s_def : "s \<equiv> (Set th prio#s')" |
666 defines s_def : "s \<equiv> (Set th prio#s')" |
1005 -- {* @{text "s"} is assumed to be a legitimate state, from which |
667 -- {* @{text "s"} is assumed to be a legitimate state, from which |
1006 the legitimacy of @{text "s"} can be derived. *} |
668 the legitimacy of @{text "s"} can be derived. *} |
1007 assumes vt_s: "vt s" |
669 assumes vt_s: "vt s" |
1008 |
670 |
671 sublocale step_set_cps < vat_s : valid_trace "s" |
|
672 proof |
|
673 from vt_s show "vt s" . |
|
674 qed |
|
675 |
|
676 sublocale step_set_cps < vat_s' : valid_trace "s'" |
|
677 proof |
|
678 from step_back_vt[OF vt_s[unfolded s_def]] show "vt s'" . |
|
679 qed |
|
680 |
|
1009 context step_set_cps |
681 context step_set_cps |
1010 begin |
682 begin |
1011 |
683 |
1012 text {* (* ddd *) |
684 text {* (* ddd *) |
1013 The following two lemmas confirm that @{text "Set"}-operating only changes the precedence |
685 The following two lemmas confirm that @{text "Set"}-operating only changes the precedence |
1014 of the initiating thread. |
686 of the initiating thread. |
1015 *} |
687 *} |
1016 |
688 |
1017 lemma eq_preced: |
689 lemma eq_preced: |
1018 fixes th' |
|
1019 assumes "th' \<noteq> th" |
690 assumes "th' \<noteq> th" |
1020 shows "preced th' s = preced th' s'" |
691 shows "preced th' s = preced th' s'" |
1021 proof - |
692 proof - |
1022 from assms show ?thesis |
693 from assms show ?thesis |
1023 by (unfold s_def, auto simp:preced_def) |
694 by (unfold s_def, auto simp:preced_def) |
1087 from step_back_step [OF vt_s[unfolded s_def]] |
758 from step_back_step [OF vt_s[unfolded s_def]] |
1088 have "step s' (Set th prio)" . |
759 have "step s' (Set th prio)" . |
1089 hence "th \<in> runing s'" by (cases, simp) |
760 hence "th \<in> runing s'" by (cases, simp) |
1090 thus ?thesis by (simp add:readys_def runing_def) |
761 thus ?thesis by (simp add:readys_def runing_def) |
1091 qed |
762 qed |
1092 from readys_in_no_subtree[OF step_back_vt[OF vt_s[unfolded s_def]] this assms(1)] |
763 find_theorems readys subtree |
764 from vat_s'.readys_in_no_subtree[OF this assms(1)] |
|
1093 show ?thesis by blast |
765 show ?thesis by blast |
1094 qed |
766 qed |
1095 |
767 |
1096 text {* |
768 text {* |
1097 By combining @{thm "eq_cp_pre"} and @{thm "th_in_no_subtree"}, |
769 By combining @{thm "eq_cp_pre"} and @{thm "th_in_no_subtree"}, |
1116 fixes s' th cs s -- {* @{text "s'"} is the state before operation*} |
788 fixes s' th cs s -- {* @{text "s'"} is the state before operation*} |
1117 defines s_def : "s \<equiv> (V th cs#s')" -- {* @{text "s"} is the state after operation*} |
789 defines s_def : "s \<equiv> (V th cs#s')" -- {* @{text "s"} is the state after operation*} |
1118 -- {* @{text "s"} is assumed to be valid, which implies the validity of @{text "s'"} *} |
790 -- {* @{text "s"} is assumed to be valid, which implies the validity of @{text "s'"} *} |
1119 assumes vt_s: "vt s" |
791 assumes vt_s: "vt s" |
1120 |
792 |
793 sublocale step_v_cps < vat_s : valid_trace "s" |
|
794 proof |
|
795 from vt_s show "vt s" . |
|
796 qed |
|
797 |
|
798 sublocale step_v_cps < vat_s' : valid_trace "s'" |
|
799 proof |
|
800 from step_back_vt[OF vt_s[unfolded s_def]] show "vt s'" . |
|
801 qed |
|
802 |
|
1121 context step_v_cps |
803 context step_v_cps |
1122 begin |
804 begin |
1123 |
|
1124 lemma rtree_RAGs: "rtree (RAG s)" |
|
1125 proof |
|
1126 show "single_valued (RAG s)" |
|
1127 apply (intro_locales) |
|
1128 by (unfold single_valued_def, auto intro: unique_RAG[OF vt_s]) |
|
1129 |
|
1130 show "acyclic (RAG s)" |
|
1131 by (rule acyclic_RAG[OF vt_s]) |
|
1132 qed |
|
1133 |
|
1134 lemma rtree_RAGs': "rtree (RAG s')" |
|
1135 proof |
|
1136 show "single_valued (RAG s')" |
|
1137 apply (intro_locales) |
|
1138 by (unfold single_valued_def, |
|
1139 auto intro:unique_RAG[OF step_back_vt[OF vt_s[unfolded s_def]]]) |
|
1140 |
|
1141 show "acyclic (RAG s')" |
|
1142 by (rule acyclic_RAG[OF step_back_vt[OF vt_s[unfolded s_def]]]) |
|
1143 qed |
|
1144 |
|
1145 lemmas vt_s' = step_back_vt[OF vt_s[unfolded s_def]] |
|
1146 |
805 |
1147 lemma ready_th_s': "th \<in> readys s'" |
806 lemma ready_th_s': "th \<in> readys s'" |
1148 using step_back_step[OF vt_s[unfolded s_def]] |
807 using step_back_step[OF vt_s[unfolded s_def]] |
1149 by (cases, simp add:runing_def) |
808 by (cases, simp add:runing_def) |
1150 |
809 |
1151 |
|
1152 lemma ancestors_th: "ancestors (RAG s') (Th th) = {}" |
810 lemma ancestors_th: "ancestors (RAG s') (Th th) = {}" |
1153 proof - |
811 proof - |
1154 from readys_root[OF vt_s' ready_th_s'] |
812 from vat_s'.readys_root[OF ready_th_s'] |
1155 show ?thesis |
813 show ?thesis |
1156 by (unfold root_def, simp) |
814 by (unfold root_def, simp) |
1157 qed |
815 qed |
1158 |
816 |
1159 lemma holding_th: "holding s' th cs" |
817 lemma holding_th: "holding s' th cs" |
1172 qed |
830 qed |
1173 |
831 |
1174 lemma ancestors_cs: |
832 lemma ancestors_cs: |
1175 "ancestors (RAG s') (Cs cs) = {Th th}" |
833 "ancestors (RAG s') (Cs cs) = {Th th}" |
1176 proof - |
834 proof - |
1177 find_theorems ancestors |
|
1178 have "ancestors (RAG s') (Cs cs) = ancestors (RAG s') (Th th) \<union> {Th th}" |
835 have "ancestors (RAG s') (Cs cs) = ancestors (RAG s') (Th th) \<union> {Th th}" |
1179 proof(rule RTree.rtree.ancestors_accum[OF rtree_RAGs']) |
836 proof(rule vat_s'.rtree_RAG.ancestors_accum) |
1180 from vt_s[unfolded s_def] |
837 from vt_s[unfolded s_def] |
1181 have " PIP s' (V th cs)" by (cases, simp) |
838 have " PIP s' (V th cs)" by (cases, simp) |
1182 thus "(Cs cs, Th th) \<in> RAG s'" |
839 thus "(Cs cs, Th th) \<in> RAG s'" |
1183 proof(cases) |
840 proof(cases) |
1184 assume "holding s' th cs" |
841 assume "holding s' th cs" |
1191 |
848 |
1192 lemma preced_kept: "the_preced s = the_preced s'" |
849 lemma preced_kept: "the_preced s = the_preced s'" |
1193 by (auto simp: s_def the_preced_def preced_def) |
850 by (auto simp: s_def the_preced_def preced_def) |
1194 |
851 |
1195 end |
852 end |
1196 |
|
1197 |
853 |
1198 text {* |
854 text {* |
1199 The following @{text "step_v_cps_nt"} is the sub-locale for @{text "V"}-operation, |
855 The following @{text "step_v_cps_nt"} is the sub-locale for @{text "V"}-operation, |
1200 which represents the case when there is another thread @{text "th'"} |
856 which represents the case when there is another thread @{text "th'"} |
1201 to take over the critical resource released by the initiating thread @{text "th"}. |
857 to take over the critical resource released by the initiating thread @{text "th"}. |
1247 | |
903 | |
1248 th7 ----| |
904 th7 ----| |
1249 *) |
905 *) |
1250 |
906 |
1251 lemma sub_RAGs': "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s'" |
907 lemma sub_RAGs': "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s'" |
1252 using next_th_RAG[OF vt_s' nt] . |
908 using next_th_RAG[OF vat_s'.vt nt] . |
1253 |
909 |
1254 lemma ancestors_th': |
910 lemma ancestors_th': |
1255 "ancestors (RAG s') (Th th') = {Th th, Cs cs}" |
911 "ancestors (RAG s') (Th th') = {Th th, Cs cs}" |
1256 proof - |
912 proof - |
1257 have "ancestors (RAG s') (Th th') = ancestors (RAG s') (Cs cs) \<union> {Cs cs}" |
913 have "ancestors (RAG s') (Th th') = ancestors (RAG s') (Cs cs) \<union> {Cs cs}" |
1258 proof(rule RTree.rtree.ancestors_accum[OF rtree_RAGs']) |
914 proof(rule vat_s'.rtree_RAG.ancestors_accum) |
1259 from sub_RAGs' show "(Th th', Cs cs) \<in> RAG s'" by auto |
915 from sub_RAGs' show "(Th th', Cs cs) \<in> RAG s'" by auto |
1260 qed |
916 qed |
1261 thus ?thesis using ancestors_th ancestors_cs by auto |
917 thus ?thesis using ancestors_th ancestors_cs by auto |
1262 qed |
918 qed |
1263 |
919 |
1384 ultimately show ?thesis by auto |
1040 ultimately show ?thesis by auto |
1385 qed |
1041 qed |
1386 |
1042 |
1387 lemma subtree_th: |
1043 lemma subtree_th: |
1388 "subtree (RAG s) (Th th) = subtree (RAG s') (Th th) - {Cs cs}" |
1044 "subtree (RAG s) (Th th) = subtree (RAG s') (Th th) - {Cs cs}" |
1389 proof(unfold RAG_s, fold subtree_cs, rule RTree.rtree.subtree_del_inside[OF rtree_RAGs']) |
1045 find_theorems "subtree" "_ - _" RAG |
1046 proof(unfold RAG_s, fold subtree_cs, rule vat_s'.rtree_RAG.subtree_del_inside) |
|
1390 from edge_of_th |
1047 from edge_of_th |
1391 show "(Cs cs, Th th) \<in> edges_in (RAG s') (Th th)" |
1048 show "(Cs cs, Th th) \<in> edges_in (RAG s') (Th th)" |
1392 by (unfold edges_in_def, auto simp:subtree_def) |
1049 by (unfold edges_in_def, auto simp:subtree_def) |
1393 qed |
1050 qed |
1394 |
1051 |
1399 lemma eq_cp: |
1056 lemma eq_cp: |
1400 fixes th' |
1057 fixes th' |
1401 shows "cp s th' = cp s' th'" |
1058 shows "cp s th' = cp s' th'" |
1402 using cp_kept_1 cp_kept_2 |
1059 using cp_kept_1 cp_kept_2 |
1403 by (cases "th' = th", auto) |
1060 by (cases "th' = th", auto) |
1404 |
|
1405 end |
1061 end |
1406 |
1062 |
1407 find_theorems "_`_" "\<Union> _" |
|
1408 |
|
1409 find_theorems "Max" "\<Union> _" |
|
1410 |
|
1411 find_theorems wf RAG |
|
1412 |
|
1413 thm wf_def |
|
1414 |
|
1415 thm image_Union |
|
1416 |
1063 |
1417 locale step_P_cps = |
1064 locale step_P_cps = |
1418 fixes s' th cs s |
1065 fixes s' th cs s |
1419 defines s_def : "s \<equiv> (P th cs#s')" |
1066 defines s_def : "s \<equiv> (P th cs#s')" |
1420 assumes vt_s: "vt s" |
1067 assumes vt_s: "vt s" |
1427 sublocale step_P_cps < vat_s' : valid_trace "s'" |
1074 sublocale step_P_cps < vat_s' : valid_trace "s'" |
1428 proof |
1075 proof |
1429 from step_back_vt[OF vt_s[unfolded s_def]] show "vt s'" . |
1076 from step_back_vt[OF vt_s[unfolded s_def]] show "vt s'" . |
1430 qed |
1077 qed |
1431 |
1078 |
1432 |
|
1433 context step_P_cps |
1079 context step_P_cps |
1434 begin |
1080 begin |
1435 |
1081 |
1436 lemma readys_th: "th \<in> readys s'" |
1082 lemma readys_th: "th \<in> readys s'" |
1437 proof - |
1083 proof - |
1440 hence "th \<in> runing s'" by (cases, simp) |
1086 hence "th \<in> runing s'" by (cases, simp) |
1441 thus ?thesis by (simp add:readys_def runing_def) |
1087 thus ?thesis by (simp add:readys_def runing_def) |
1442 qed |
1088 qed |
1443 |
1089 |
1444 lemma root_th: "root (RAG s') (Th th)" |
1090 lemma root_th: "root (RAG s') (Th th)" |
1445 using readys_root[OF vat_s'.vt readys_th] . |
1091 using readys_root[OF readys_th] . |
1446 |
1092 |
1447 lemma in_no_others_subtree: |
1093 lemma in_no_others_subtree: |
1448 assumes "th' \<noteq> th" |
1094 assumes "th' \<noteq> th" |
1449 shows "Th th \<notin> subtree (RAG s') (Th th')" |
1095 shows "Th th \<notin> subtree (RAG s') (Th th')" |
1450 proof |
1096 proof |
1871 from ancestors_Field[OF 2(2)] |
1517 from ancestors_Field[OF 2(2)] |
1872 and that show ?thesis by (unfold tRAG_alt_def, auto) |
1518 and that show ?thesis by (unfold tRAG_alt_def, auto) |
1873 qed auto |
1519 qed auto |
1874 have neq_th_a: "th_a \<noteq> th" |
1520 have neq_th_a: "th_a \<noteq> th" |
1875 proof - |
1521 proof - |
1876 from readys_in_no_subtree[OF vat_s'.vt th_ready assms] |
1522 find_theorems readys subtree s' |
1523 from vat_s'.readys_in_no_subtree[OF th_ready assms] |
|
1877 have "(Th th) \<notin> subtree (RAG s') (Th th')" . |
1524 have "(Th th) \<notin> subtree (RAG s') (Th th')" . |
1878 with tRAG_subtree_RAG[of s' "Th th'"] |
1525 with tRAG_subtree_RAG[of s' "Th th'"] |
1879 have "(Th th) \<notin> subtree (tRAG s') (Th th')" by auto |
1526 have "(Th th) \<notin> subtree (tRAG s') (Th th')" by auto |
1880 with a_in[unfolded eq_a] show ?thesis by auto |
1527 with a_in[unfolded eq_a] show ?thesis by auto |
1881 qed |
1528 qed |