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Abstract. In real-time systems with threads, resource locking and priority sched-
uling, one faces the problem of Priority Inversion. This problem can make the
behaviour of threads unpredictable and the resulting bugs can be hard to find. The
Priority Inheritance Protocol is one solution implemented in many systems for
solving this problem, but the correctness of this solution has never been formally
verified in a theorem prover. As already pointed out in the literature, the original
informal investigation of the Property Inheritance Protocol presents a correctness
“proof” for an incorrect algorithm. In this paper we fix the problem of this proof
by making all notions precise and implementing a variant of a solution proposed
earlier. We also generalise the scheduling problem to the practically relevant case
where critical sections can overlap. Our formalisation in Isabelle/HOL is based
on Paulson’s inductive approach to protocol verification. The formalisation not
only uncovers facts overlooked in the literature, but also helps with an efficient
implementation of this protocol. Earlier implementations were criticised as too
inefficient. Our implementation builds on top of the small PINTOS operating
system used for teaching.
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1 Introduction

Many real-time systems need to support threads involving priorities and locking of re-
sources. Locking of resources ensures mutual exclusion when accessing shared data or
devices that cannot be preempted. Priorities allow scheduling of threads that need to
finish their work within deadlines. Unfortunately, both features can interact in subtle
ways leading to a problem, called Priority Inversion. Suppose three threads having pri-
orities H(igh), M (edium) and L(ow). We would expect that the thread H blocks any
other thread with lower priority and the thread itself cannot be blocked indefinitely by

? This paper is a revised, corrected and expanded version of [31]. In Section 4 we improve our
previous result by proving a finite bound for Priority Inversion. Moreover, we are giving in
this paper more details about our proof and describe some of our (unverified) C-code for im-
plementing the Priority Inversion Protocol, as well as surveying the existing literature in more
depth. Our C-code follows closely all results we proved about optimisations of the Priority
Inheritance Protocol.
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threads with lower priority. Alas, in a naive implementation of resource locking and
priorities, this property can be violated. For this let L be in the possession of a lock for
a resource that H also needs. H must therefore wait for L to exit the critical section
and release this lock. The problem is that L might in turn be blocked by any thread
with priority M , and so H sits there potentially waiting indefinitely (consider the case
where threads with propority M continously need to be processed). Since H is blocked
by threads with lower priorities, the problem is called Priority Inversion. It was first
described in [12] in the context of the Mesa programming language designed for con-
current programming.

If the problem of Priority Inversion is ignored, real-time systems can become un-
predictable and resulting bugs can be hard to diagnose. The classic example where this
happened is the software that controlled the Mars Pathfinder mission in 1997 [21]. On
Earth the software run mostly without any problem, but once the spacecraft landed on
Mars, it shut down at irregular, but frequent, intervals leading to loss of project time
as normal operation of the craft could only resume the next day (the mission and data
already collected were fortunately not lost, because of a clever system design). The rea-
son for the shutdowns was that the scheduling software fell victim to Priority Inversion:
a low priority thread locking a resource prevented a high priority thread from running
in time, leading to a system reset. Once the problem was found, it was rectified by
enabling the Priority Inheritance Protocol (PIP) [24]3 in the scheduling software.

The idea behind PIP is to let the thread L temporarily inherit the high priority from
H until L leaves the critical section unlocking the resource. This solves the problem of
H having to wait indefinitely, because L cannot be blocked by threads having priority
M . While a few other solutions exist for the Priority Inversion problem, PIP is one that
is widely deployed and implemented. This includes VxWorks (a proprietary real-time
OS used in the Mars Pathfinder mission, in Boeing’s 787 Dreamliner, Honda’s ASIMO
robot, etc.) and ThreadX (another proprietary real-time OS used in nearly all HP inkjet
printers [28]), but also the POSIX 1003.1c Standard realised for example in libraries
for FreeBSD, Solaris and Linux.

Two advantages of PIP are that it is deterministic and that increasing the priority of
a thread can be performed dynamically by the scheduler. This is in contrast to Priority
Ceiling [24], another solution to the Priority Inversion problem, which requires static
analysis of the program in order to prevent Priority Inversion, and also in contrast to the
approach taken in the Windows NT scheduler, which avoids this problem by randomly
boosting the priority of ready low-priority threads (see for instance [2]). However, there
has also been strong criticism against PIP. For instance, PIP cannot prevent deadlocks
when lock dependencies are circular, and also blocking times can be substantial (more
than just the duration of a critical section). Though, most criticism against PIP centres
around unreliable implementations and PIP being too complicated and too inefficient.
For example, Yodaiken writes in [30]:

“Priority inheritance is neither efficient nor reliable. Implementations are ei-
ther incomplete (and unreliable) or surprisingly complex and intrusive.”

3 Sha et al. call it the Basic Priority Inheritance Protocol [24] and others sometimes also call it
Priority Boosting, Priority Donation or Priority Lending.
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He suggests avoiding PIP altogether by designing the system so that no priority inver-
sion may happen in the first place. However, such ideal designs may not always be
achievable in practice.

In our opinion, there is clearly a need for investigating correct algorithms for PIP. A
few specifications for PIP exist (in informal English) and also a few high-level descrip-
tions of implementations (e.g. in the textbooks [15, Section 12.3.1] and [26, Section
5.6.5]), but they help little with actual implementations. That this is a problem in prac-
tice is proved by an email by Baker, who wrote on 13 July 2009 on the Linux Kernel
mailing list:

“I observed in the kernel code (to my disgust), the Linux PIP implementation is
a nightmare: extremely heavy weight, involving maintenance of a full wait-for
graph, and requiring updates for a range of events, including priority changes
and interruptions of wait operations.”

The criticism by Yodaiken, Baker and others suggests another look at PIP from a more
abstract level (but still concrete enough to inform an implementation), and makes PIP
a good candidate for a formal verification. An additional reason is that the original
specification of PIP [24], despite being informally “proved” correct, is actually flawed.

Yodaiken [30] and also Moylan et al. [16] point to a subtlety that had been over-
looked in the informal proof by Sha et al. They specify PIP in [24, Section III] so that
after the thread (whose priority has been raised) completes its critical section and re-
leases the lock, it “returns to its original priority level”. This leads them to believe that
an implementation of PIP is “rather straightforward” [24]. Unfortunately, as Yodaiken
and Moylan et al. point out, this behaviour is too simplistic. Moylan et al. write that
there are “some hidden traps” [16]. Consider the case where the low priority thread L
locks two resources, and two high-priority threads H and H ′ each wait for one of them.
If L releases one resource so that H , say, can proceed, then we still have Priority In-
version with H ′ (which waits for the other resource). The correct behaviour for L is to
switch to the highest remaining priority of the threads that it blocks. A similar error is
made in the textbook [20, Section 2.3.1] which specifies for a process that inherited a
higher priority and exits a critical section “it resumes the priority it had at the point of
entry into the critical section”. This error can also be found in the textbook [14, Section
16.4.1] where the authors write about this process: “its priority is immediately lowered
to the level originally assigned”; and also in the more recent textbook [13, Page 119]
where the authors state: “when [the task] exits the critical section that caused the block,
it reverts to the priority it had when it entered that section”. The textbook [15, Page
286] contains a simlar flawed specification and even goes on to develop pseudo-code
based on this flawed specification. Accordingly, the operating system primitives for in-
heritance and restoration of priorities in [15] depend on maintaining a data structure
called inheritance log. This log is maintained for every thread and broadly specified as
containing “[h]istorical information on how the thread inherited its current priority”
[15, Page 527]. Unfortunately, the important information about actually computing the
priority to be restored solely from this log is not explained in [15] but left as an “excer-
cise” to the reader. As we shall see, a correct version of PIP does not need to maintain
this (potentially expensive) log data structure at all. Surprisingly also the widely read
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and frequently updated textbook [25] gives the wrong specification. On Page 254 the
authors write: “Upon releasing the lock, the [low-priority] thread will revert to its orig-
inal priority.” The same error is also repeated later in this popular textbook.

While [13,14,15,20,24,25] are the only formal publications we have found that spec-
ify the incorrect behaviour, it seems also many informal descriptions of the PIP protocol
overlook the possibility that another high-priority process might wait for a low-priority
process to finish. A notable exception is the texbook [3], which gives the correct be-
haviour of resetting the priority of a thread to the highest remaining priority of the
threads it blocks. This textbook also gives an informal proof for the correctness of PIP
in the style of Sha et al. Unfortunately, this informal proof is too vague to be useful for
formalising the correctness of PIP and the specification leaves out nearly all details in
order to implement PIP efficiently.

Contributions: There have been earlier formal investigations into PIP [8,10,29], but
they employ model checking techniques. This paper presents a formalised and mechan-
ically checked proof for the correctness of PIP. For this we needed to design a new
correctness criterion for PIP. In contrast to model checking, our formalisation provides
insight into why PIP is correct and allows us to prove stronger properties that, as we
will show, can help with an efficient implementation of PIP. We illustrate this with an
implementation of PIP in the educational operating system PINTOS [19]. For example,
we found by “playing” with the formalisation that the choice of the next thread to take
over a lock when a resource is released is irrelevant for PIP being correct—a fact that
has not been mentioned in the literature and not been used in the reference implementa-
tion of PIP in PINTOS. This fact, however, is important for an efficient implementation
of PIP, because we can give the lock to the thread with the highest priority so that it
terminates more quickly. We are also being able to generalise the scheduler of Sha et
al. [24] to the practically relevant case where critical sections can overlap; see Figure 1
a) below for an example of this restriction. In the existing literature there is no proof
and also no proving method that cover this generalised case.

P1 P2 V1 P3 V2 V3

P1 P2 V2 V1 P3 V3

t

t

b)

a)

Fig. 1. Assume a process is over time locking and unlocking, say, three resources. The
locking requests are labelled P1, P2, and P3 respectively, and the corresponding un-
locking operations are labelled V1, V2, and V3. Then graph a) shows properly nested
critical sections as required by Sha et al. [24] in their proof—the sections must either
be contained within each other (the section P2–V2 is contained in P1–V1) or be inde-
pendent (P3–V3 is independent from the other two). Graph b) shows the general case
where the locking and unlocking of different critical sections can overlap.
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2 Formal Model of the Priority Inheritance Protocol

The Priority Inheritance Protocol, short PIP, is a scheduling algorithm for a single-
processor system.4 Following good experience in earlier work [27], our model of PIP is
based on Paulson’s inductive approach for protocol verification [18]. In this approach
a state of a system is given by a list of events that happened so far (with new events
prepended to the list). Events of PIP fall into five categories defined as the Isabelle
datatype:

datatype event = Create thread priority
| Exit thread
| Set thread priority thread resets its own priority
| P thread cs request of resource cs by thread
| V thread cs release of resource cs by thread

whereby threads, priorities and (critical) resources are represented as natural numbers.
The event Set models the situation that a thread obtains a new priority given by the
programmer or user (for example via the nice utility under UNIX). For states we
define the following type-synonym:

type synonym state = event list

As in Paulson’s work, we need to define functions that allow us to make some observa-
tions about states. One function, called threads, calculates the set of “live” threads that
we have seen so far in a state:

threads []
def
= ∅

threads (Create th prio::s)
def
= {th} ∪ threads s

threads (Exit th::s)
def
= threads s − {th}

threads ( ::s)
def
= threads s

In this definition :: stands for list-cons and [] for the empty list. We use to match
any pattern, like in functional programming. Another function calculates the priority
for a thread th, which is defined as

priority th []
def
= 0

priority th (Create th ′ prio::s)
def
= if th ′= th then prio else priority th s

priority th (Set th ′ prio::s)
def
= if th ′= th then prio else priority th s

priority th ( ::s)
def
= priority th s

In this definition we set 0 as the default priority for threads that have not (yet) been
created. The last function we need calculates the “time”, or index, at which time a
thread had its priority last set.

4 We shall come back later to the case of PIP on multi-processor systems.
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last set th []
def
= 0

last set th (Create th ′ prio::s)
def
= if th = th ′ then |s| else last set th s

last set th (Set th ′ prio::s)
def
= if th = th ′ then |s| else last set th s

last set th ( ::s)
def
= last set th s

In this definition |s| stands for the length of the list of events s. Again the default value
in this function is 0 for threads that have not been created yet. An actor of an event is
defined as

actor (Create th prio)
def
= th

actor (Exit th)
def
= th

actor (Set th pty)
def
= th

actor (P th cs)
def
= th

actor (V th cs)
def
= th

This allows us to filter out the actions a set of threads ths perform in a list of events s,
namely

actions of ths s
def
= [e←s . actor e ∈ ths].

where we use Isabelle’s notation for list-comprehensions. This notation is very similar
to notation used in Haskell for list-comprehensions. A precedence of a thread th in a
state s is the pair of natural numbers defined as

prec th s
def
= (priority th s, last set th s)

We also use the abbreviation

precs ths s
def
= {prec th s | th ∈ ths}

for the precedences of a set of threads ths in state s. The point of precedences is to
schedule threads not according to priorities (because what should we do in case two
threads have the same priority), but according to precedences. Precedences allow us
to always discriminate between two threads with equal priority by taking into account
the time when the priority was last set. We order precedences so that threads with the
same priority get a higher precedence if their priority has been set earlier, since for such
threads it is more urgent to finish their work. In an implementation this choice would
translate to a quite straightforward FIFO-scheduling of threads with the same priority.

Moylan et al. [16] considered the alternative of “time-slicing” threads with equal
priority, but found that it does not lead to advantages in practice. On the contrary, ac-
cording to their work having a policy like our FIFO-scheduling of threads with equal
priority reduces the number of tasks involved in the inheritance process and thus min-
imises the number of potentially expensive thread-switches.

Next, we introduce the concept of waiting queues. They are lists of threads asso-
ciated with every resource. The first thread in this list (i.e. the head, or short hd) is
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Fig. 2. An instance of a Resource Allocation Graph (RAG).

chosen to be the one that is in possession of the “lock” of the corresponding resource.
We model waiting queues as functions, below abbreviated as wq. They take a resource
as argument and return a list of threads. This allows us to define when a thread holds,
respectively waits for, a resource cs given a waiting queue function wq.

holds wq th cs
def
= th ∈ set (wq cs) ∧ th = hd (wq cs)

waits wq th cs
def
= th ∈ set (wq cs) ∧ th 6= hd (wq cs)

In this definition we assume that set converts a list into a set. Note that in the first
definition the condition about th ∈ set (wq cs) does not follow from th = hd (set (wq
cs)), since the head of an empty list is undefined in Isabelle/HOL. At the beginning,
that is in the state where no thread is created yet, the waiting queue function will be the
function that returns the empty list for every resource.

all unlocked
def
= λcs. [] (1)

Using holds and waits, we can introduce Resource Allocation Graphs (RAG), which
represent the dependencies between threads and resources. We choose to represent
RAGs as relations using pairs of the form

(T th, C cs) and (C cs, T th) (2)

where the first stands for a waiting edge and the second for a holding edge (C and T
are constructors of a datatype for vertices). Given a waiting queue function, a RAG is
defined as the union of the sets of waiting and holding edges, namely

RAG wq
def
= {(T th, C cs) | waits wq th cs} ∪ {(C cs, T th) | holds wq th cs}

If there is no cycle, then every RAG can be pictured as a forest of trees, as for example
in Figure 2.

Because of the RAGs, we will need to formalise some results about graphs. It seems
for our purposes the most convenient representation of graphs are binary relations given



8

by sets of pairs shown in (2). The pairs stand for the edges in graphs. This relation-
based representation has the advantage that the notions waiting and holding are already
defined in terms of relations amongst threads and resources. Also, we can easily re-
use the standard notions for transitive closure operations + and ∗, as well as relation
composition for our graphs. While there are a few formalisations for graphs already
implemented in Isabelle, we choose to introduce our own library of graphs for PIP. The
justification for this is that we wanted to have a more general theory of graphs which is
capable of representing potentially infinite graphs (in the sense of infinitely branching
and infinite size): the property that our RAGs are actually forests of finitely branching
trees having only a finite depth should be something we can prove for our model of
PIP—it should not be an assumption we build already into our model. A forest is defined
in our representation as the relation rel that is single valued and acyclic:

single valued rel
def
= ∀ x y. (x, y) ∈ rel −→ (∀ z. (x, z) ∈ rel −→ y = z)

acyclic rel
def
= ∀ x. (x, x) /∈ rel+

The children, subtree and ancestors of a node in a graph can be easily defined relation-
ally as

children rel node
def
= {y | (y, node) ∈ rel}

subtree rel node
def
= {y | (y, node) ∈ rel∗}

ancestors rel node
def
= {y | (node, y) ∈ rel+}

(3)

Note that forests can have trees with infinte depth and containing nodes with infinitely
many children. A finite forest is a forest whose underlying relation is well-founded5 and
every node has finitely many children (is only finitely branching).

The locking mechanism ensures that for each thread node, there can be many incom-
ing holding edges in the RAG, but at most one out going waiting edge. The reason is that
when a thread asks for a resource that is locked already, then the thread is blocked and
cannot ask for another resource. Clearly, also every resource can only have at most one
outgoing holding edge—indicating that the resource is locked. So if the RAG is well-
founded and finite, we can always start at a thread waiting for a resource and “chase”
outgoing arrows leading to a single root of a tree, which must be a ready thread.

The use of relations for representing RAGs allows us to conveniently define the
Thread Dependants Graph (TDG):

TDG wq = {(th1, th2) | ∃ cs. (T th1, C cs) ∈ RAG wq ∧ (C cs, T th2) ∈ RAG wq}
(4)

This definition is the relation that one thread is waiting for another to release a resource,
but the corresponding resource is “hidden”. In Figure 2 this means the TDG connects
th1 and th2 to th0, which both wait for resource cs1 to be released; and th3 to th2,
which cannot make any progress unless th2 makes progress. Similarly for the other

5 For well-founded we use the quite natural definition from Isabelle/HOL.
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threads. If there is a circle of dependencies in a RAG (and thus TDG), then clearly we
have a deadlock. Therefore when a thread requests a resource, we must ensure that
the resulting RAG and TDG are not circular. In practice, the programmer has to ensure
this. Our model will enforce that critical resources can only be requested provided no
circularity can arise (but critical sections can overlap, see Fig 1).

Next we introduce the notion of the current precedence of a thread th in a state s. It
is defined as

cprec wq s th
def
= Max (precs (subtree (TDG wq) th) s) (5)

While the precedence prec of any thread is determined statically (for example when
the thread is created), the point of the current precedence is to dynamically boost this
precedence, if needed according to PIP. Therefore the current precedence of th is given
as the maximum of the precedences of all threads in its subtree (which includes by
definition th itself). Since the notion of current precedence is defined as the transitive
closure of the dependent threads in the TDG, we deal correctly with the problem in the
informal algorithm by Sha et al. [24] where a priority of a thread is lowered prematurely
(see Introduction). We again introduce an abbreviation for current precedences of a set
of threads, written cprecs wq s ths.

cprecs wq s ths
def
= {cprec wq s th | th ∈ ths}

The next function, called schs, defines the behaviour of the scheduler. It will be
defined by recursion on the state (a list of events); this function returns a schedule state,
which we represent as a record consisting of two functions:

(|wq fun, cprec fun|)

The first function is a waiting queue function (that is, it takes a resource cs and returns
the corresponding list of threads that lock or wait for it); the second is a function that
takes a thread and returns its current precedence (see the wq in (5)). We assume the
usual getter and setter methods for such records.

In the initial state, the scheduler starts with all resources unlocked (the correspond-
ing function is defined in (1)) and the current precedence of every thread is initialised

with (0, 0); that means initial cprec
def
= λ . (0, 0). Therefore we have for the initial

shedule state

schs []
def
=

(|wq fun = all unlocked, cprec fun = initial cprec|)

The cases for Create, Exit and Set are also straightforward: we calculate the waiting
queue function of the (previous) state s; this waiting queue function wq is unchanged
in the next schedule state—because none of these events lock or release any resource;
for calculating the next cprec fun, we use wq and cprec defined above. This gives the
following three clauses for schs:
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schs (Create th prio::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Create th prio::s)|)

schs (Exit th::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Exit th::s)|)

schs (Set th prio::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Set th prio::s)|)

More interesting are the cases where a resource, say cs, is requested or released. In these
cases we need to calculate a new waiting queue function. For the event P th cs, we have
to update the function so that the new thread list for cs is the old thread list plus the
thread th appended to the end of that list (remember the head of this list is assigned to
be in the possession of this resource). This gives the clause

schs (P th cs::s)
def
=

let wq = wq fun (schs s) in
let new wq = wq(cs := (wq cs @ [th])) in
(|wq fun = new wq, cprec fun = cprec new wq (P th cs::s)|)

The clause for event V th cs is similar, except that we need to update the waiting queue
function so that the thread that possessed the lock is deleted from the corresponding
thread list. For this list transformation, we use the auxiliary function release. A simple
version of release would just delete this thread and return the remaining threads, namely

release []
def
= []

release ( ::qs)
def
= qs

In practice, however, often the thread with the highest precedence in the list will get
the lock next. We have implemented this choice, but later found out that the choice of
which thread is chosen next is actually irrelevant for the correctness of PIP. Therefore
we prove the stronger result where release is defined as

release []
def
= []

release ( ::qs)
def
= SOME qs ′. distinct qs ′∧ set qs ′= set qs

where SOME stands for Hilbert’s epsilon and implements an arbitrary choice for the
next waiting list. It just has to be a list of distinctive threads and contains the same
elements as qs (essentially qs ′ can be any reordering of the list qs). This gives for V the
clause:

schs (V th cs::s)
def
=

let wq = wq fun (schs s) in
let new wq = wq(cs := release (wq cs)) in
(|wq fun = new wq, cprec fun = cprec new wq (V th cs::s)|)
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Having the scheduler function schs at our disposal, we can “lift”, or overload, the
notions waits, holds, RAG, and cprec to operate on states only.

holds s
def
= holds (wq fun (schs s))

waits s
def
= waits (wq fun (schs s))

RAG s
def
= RAG (wq fun (schs s))

TDG s
def
= TDG (wq fun (schs s))

cprec s
def
= cprec fun (schs s)

With these abbreviations in place we can derive the following two facts about TDGs
and cprec, which are more convenient to use in subsequent proofs.

TDG s = {(th1, th2) | ∃ cs. (T th1, C cs) ∈ RAG s ∧ (C cs, T th2) ∈ RAG s}
cprec s th = Max (precs (subtree (TDG s) th) s)

(6)

Next we can introduce the notion of a thread being ready in a state (i.e. threads that do
not wait for any resource, which are the roots of the trees in the RAG, see Figure 2).
The running thread is then the thread with the highest current precedence of all ready
threads.

ready s
def
= {th ∈ threads s | ∀ cs. ¬ waits s th cs}

running s
def
= {th ∈ ready s | cprec s th = Max (cprec s ‘ ready s)}

In the second definition ‘ stands for the image of a set under a function. Note that
in the initial state, that is where the list of events is empty, the set threads is empty and
therefore there is neither a thread ready nor running. If there is one or more threads
ready, then there can only be one thread running, namely the one whose current prece-
dence is equal to the maximum of all ready threads. We use sets to capture both possi-
bilities. We can now also conveniently define the set of resources that are locked by a
thread in a given state and also when a thread is detached in a state (meaning the thread
neither holds nor waits for a resource—in the RAG this would correspond to an isolated
node without any incoming and outgoing edges, see Figure 2):

resources s th
def
= {cs | holds s th cs}

detached s th
def
= (@ cs. holds s th cs) ∧ (@ cs. waits s th cs)

Finally we can define what a valid state is in our model of PIP. For example we can-
not expect to be able to exit a thread, if it was not created yet. These validity constraints
on states are characterised by the inductive predicate PIP and valid state. We first give
five inference rules for PIP relating a state and an event that can happen next.

th /∈ threads s
PIP s (Create th prio)

th ∈ running s resources s th = ∅
PIP s (Exit th)
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The first rule states that a thread can only be created, if it is not alive yet. Similarly, the
second rule states that a thread can only be terminated if it was running and does not
lock any resources anymore (this simplifies slightly our model; in practice we would
expect the operating system releases all locks held by a thread that is about to exit). The
event Set can happen if the corresponding thread is running.

th ∈ running s
PIP s (Set th prio)

This is because the Set event is for a thread to change its own priority—therefore it must
be running.

If a thread wants to lock a resource, then the thread needs to be running and also
we have to make sure that the resource lock does not lead to a cycle in the RAG (the
purpose of the second premise in the rule below). In practice, ensuring the latter is the
responsibility of the programmer. In our formal model we brush aside these problematic
cases in order to be able to make some meaningful statements about PIP.6

th ∈ running s (C cs, T th) /∈ (RAG s)+

PIP s (P th cs)

Similarly, if a thread wants to release a lock on a resource, then it must be running and
in the possession of that lock. This is formally given by the last inference rule of PIP.

th ∈ running s holds s th cs
PIP s (V th cs)

Note, however, that apart from the circularity condition, we do not make any assumption
on how different resources can be locked and released relative to each other. In our
model it is possible that critical sections overlap. This is in contrast to Sha et al [24]
who require that critical sections are properly nested (recall Fig. 1).

A valid state of PIP can then be conveniently be defined as follows:

valid state []

valid state s PIP s e
valid state (e::s)

This completes our formal model of PIP. In the next section we present a series of
desirable properties derived from this model of PIP. This can be regarded as a validation
of the correctness of our model.

3 The Correctness Proof

Sha et al. state their first correctness criterion for PIP in terms of the number of low-
priority threads [24, Theorem 3]: if there are n low-priority threads, then a blocked job

6 This situation is similar to the infamous occurs check in Prolog: In order to say anything
meaningful about unification, one needs to perform an occurs check. But in practice the occurs
check is omitted and the responsibility for avoiding problems rests with the programmer.
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with high priority can only be blocked a maximum of n times. Their second correctness
criterion is given in terms of the number of critical resources [24, Theorem 6]: if there
are m critical resources, then a blocked job with high priority can only be blocked
a maximum of m times. Both results on their own, strictly speaking, do not prevent
indefinite, or unbounded, Priority Inversion, because if a low-priority thread does not
give up its critical resource (the one the high-priority thread is waiting for), then the
high-priority thread can never run. The argument of Sha et al. is that if threads release
locked resources in a finite amount of time, then indefinite Priority Inversion cannot
occur—the high-priority thread is guaranteed to run eventually. The assumption is that
programmers must ensure that threads are programmed in this way. However, even
taking this assumption into account, the correctness properties of Sha et al. are not
true for their version of PIP—despite being “proved”. As Yodaiken [30] and Moylan et
al. [16] pointed out: If a low-priority thread possesses locks to two resources for which
two high-priority threads are waiting for, then lowering the priority prematurely after
giving up only one lock, can cause indefinite Priority Inversion for one of the high-
priority threads, invalidating their two bounds (recall the counter example described in
the Introduction).

Even when fixed, their proof idea does not seem to go through for us, because of
the way we have set up our formal model of PIP. One reason is that we allow critical
sections, which start with a P-event and finish with a corresponding V-event, to arbi-
trarily overlap (something Sha et al. explicitly exclude). Therefore we have designed a
different correctness criterion for PIP. The idea behind our criterion is as follows: for
all states s, we know the corresponding thread th with the highest precedence; we show
that in every future state (denoted by s ′@ s) in which th is still alive, either th is running
or it is blocked by a thread that was alive in the state s and was waiting for or in the
possession of a lock in s. Since in s, as in every state, the set of alive threads is finite, th
can only be blocked by a finite number of threads.

However, the theorem we are going to prove hinges upon a number of natural as-
sumptions about the states s and s ′@ s, the thread th and the events happening in s ′. We
list them next:

Assumptions on the states s and s ′@ s: We need to require that s and s ′@ s
are valid states:

valid state s, valid state (s ′@ s)

Assumptions on the thread th: The thread th must be alive in s and has the
highest precedence of all alive threads in s. Furthermore the priority of th is
prio (we need this in the next assumptions).

th ∈ threads s
prec th s = Max (precs s (threads s))
prec th s = (prio, )

Assumptions on the events in s ′: To make sure th has the highest precedence
we have to assume that events in s ′ can only create (respectively set) threads
with equal or lower priority than prio of th. For the same reason, we also need
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to assume that the priority of th does not get reset and all other reset priorities
are either less or equal. Moreover, we assume that th does not get “exited” in
s ′. This can be ensured by assuming the following three implications.

If Create th ′ prio ′∈ set s ′ then prio ′≤ prio
If Set th ′ prio ′∈ set s ′ then th ′ 6= th and prio ′≤ prio
If Exit th ′∈ set s ′ then th ′ 6= th

The locale mechanism of Isabelle helps us to manage conveniently such assumptions [9].
Under these assumptions we shall prove the following correctness property:

Theorem 1. Given the assumptions about states s and s ′ @ s, the thread th and the
events in s ′, then either

• th ∈ running (s ′@ s) or

• there exists a thread th ′ with th ′ 6= th and th ′ ∈ running (s ′ @ s) such that th ′ ∈
threads s, ¬ detached s th ′ and cprec (s ′@ s) th ′= prec th s.

This theorem ensures that the thread th, which has the highest precedence in the state
s, is either running in state s ′@ s, or can only be blocked in the state s ′@ s by a thread
th ′ that already existed in s and is waiting for a resource or had a lock on at least one
resource—that means the thread was not detached in s. As we shall see shortly, that
means there are only finitely many threads that can block th in this way.

The next lemma is part of the proof for Theorem 1: Given our assumptions (on th),
the first property we show that a running thread th ′ must either wait for or hold a re-
source in state s.

Lemma 1. If th ′∈ running (s ′@ s) and th 6= th ′ then ¬ detached s th ′.

Proof. Let us assume otherwise, that is th ′ is detached in state s, then, according to the
definition of detached, th ′ does not hold or wait for any resource. Hence the cprec-value
of th ′ in s is not boosted, that is cprec s th ′= prec th ′ s, and is therefore lower than the
precedence (as well as the cprec-value) of th. This means th ′will not run as long as th
is a live thread. In turn this means th ′ cannot take any action in state s ′@ s to change its
current status; therefore th ′ is still detached in state s ′@ s. Consequently th ′ is also not
boosted in state s ′@ s and would not run. This contradicts our assumption. ut

Proof (of Theorem 1). If th ∈ running (s ′ @ s), then there is nothing to show. So let
us assume otherwise. Since the RAG is well-founded, we know there exists an ancestor
of th that is the root of the corresponding subtree and therefore is ready (it does not
request any resources). Let us call this thread th ′. Since in PIP the cprec-value of any
thread equals the maximum precedence of all threads in its RAG-subtree, and th is in the
subtree of th ′, the cprec-value of th ′ cannot be lower than the precedence of th. But, it
can also not be higher, because the precedence of th is the maximum among all threads.
Therefore we know that the cprec-value of th ′ is the same as the precedence of th. The
result is that th ′must be running. This is because cprec-value of th ′ is the highest of all
ready threads. This follows from the fact that the cprec-value of any ready thread is the
maximum of the precedences of all threads in its subtrees (with th having the highest of



15

all threads and being in the subtree of th ′). We also have that th 6= th ′ since we assumed
th is not running. By Lem. 1 we have that ¬ detached s th ′. If th ′ is not detached in s,
that is either holding or waiting for a resource, it must be that th ′∈ threads s.

This concludes the proof of Theorem 1. ut

4 A Finite Bound on Priority Inversion

Like in the work by Sha et al. our result in Thm 1 does not yet guarantee the absence
of indefinite Priority Inversion. For this we further need the property that every thread
gives up its resources after a finite amount of time. We found that this property is not so
straightforward to formalise in our model. There are mainly two reasons for this: First,
we do not specify what “running the code” of a thread means, for example by giving
an operational semantics for machine instructions. Therefore we cannot characterise
what are “good” programs that contain for every locking request for a resource also
a corresponding unlocking request. Second, we need to distinguish between a thread
that “just” locks a resource for a finite amount of time (even if it is very long) and one
that locks it forever (there might be an unbounded loop in between the locking and
unlocking requests).

Because of these problems, we decided in our earlier paper [31] to leave out this
property and let the programmer take on the responsibility to program threads in such
a benign manner (in addition to causing no circularity in the RAG). This leave-it-to-
the-programmer was also the approach taken by Sha et al. in their paper. However, in
this paper we can make an improvement by establishing a finite bound on the duration
of Priority Inversion measured by the number of events. The events can be seen as
a rough(!) abstraction of the “runtime behaviour” of threads and also as an abstract
notion of “time”—when a new event happens, some time must have passed.

What we will establish in this section is that there can only be a finite number of
states after state s in which the thread th is blocked (recall for this that a state is a list
of events). For this finiteness bound to exist, Sha et al. informally make two assump-
tions: first, there is a finite pool of threads (active or hibernating) and second, each of
these threads will give up its resources after a finite amount of time. However, we do
not have this concept of active or hibernating threads in our model. In fact we can dis-
pense with the first assumption altogether and allow that in our model we can create
new threads or exit existing threads arbitrarily. Consequently, the absence of indefinite
priority inversion we are trying to establish in our model is not true, unless we stipulate
an upper bound on the number of threads that have been created during the time lead-
ing to any future state after s. Otherwise our PIP scheduler could be “swamped” with
Create-requests of lower priority threads. So our first assumption states:

Assumption on the number of threads created after the state s: Given the
state s, in every “future” valid state es @ s, we require that the number of
created threads is less than a bound BC, that is

len (filter isCreate es) < BC
wherby es is a list of events.
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Note that it is not enough to just to state that there are only finite number of threads
created up until a single state s ′ @ s after s. Instead, we need to put this bound on the
Create events for all valid states after s. This ensures that no matter which “future”
state is reached, the number of Create-events is finite. This bound BC is assumed with
respect to all future states es @ s of s, not just a single one.

For our second assumption about giving up resources after a finite amount of “time”,
let us introduce the following definition about threads that can potentially block th:

blockers
def
= {th ′ | ¬ detached s th ′∧ th ′ 6= th}

This set contains all threads that are not detached in state s. According to our definiton
of detached, this means a thread in blockers either holds or waits for some resource in
state s . Our Thm. 1 implies that any of such threads can all potentially block th after
state s. We need to make the following assumption about the threads in the blockers-set:

Assumptions on the threads th ′ ∈ blockers: For each such th ′ there exists a
finite bound BND(th ′) such that for all future valid states es @ s, we have that
if ¬ detached (es @ s) th ′, then

len (actions of {th ′} es) < BND(th ′)

By this assumption we enforce that any thread potentially blocking th must become
detached (that is it owns no resource anymore) after a finite number of events in es @ s.
Again we have to state this bound to hold in all valid states after s. The bound reflects
how each thread th ′ is programmed: Though we cannot express what instructions a
thread is executing, the events in our model correspond to the system calls made by a
thread. Our BND(th ′) bounds the number of these “calls”.

The main reason for these two assumptions is that we can prove the following: The
number of states after s in which the thread th is not running (that is where Priority
Inversion occurs) can be bounded by the number of actions the threads in blockers per-
form (i.e. events) and how many threads are newly created. To state our bound formally,
we need to make a definition of what we mean by intermediate states between a state
s and a future state after s; they will be the list of states starting from s upto the state
es @ s. For example, suppose es = [en, en−1, . . . , e2, e1], then the intermediate states
from s upto es @ s are

s
e1 :: s
e2 :: e1 :: s
. . .
en−1 :: . . . :: e2 :: e1 :: s

This list of intermediate states can be defined by the following recursive function

s upto []
def
= []

s upto ( ::es) def
= (es @ s) :: s upto es

Our theorem can then be stated as follows:
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Theorem 2. Given our assumptions about bounds, we have that

len [s ′← s upto es. th 6∈ running s ′] ≤ BC +
∑

th ′ ∈ blockers. BND(th ′) .

This theorem uses Isabelle’s list-comprehension notation, which lists all intermediate
states between s and es @ s, and then filters this list according to states in which th is
not running. By calculating the number of elements in the filtered list using the function
len, we have the number of intermediate states in which th is not running and which by
the theorem is bounded by the term on the right-hand side.

Proof. There are two characterisations for the number of events in es: First, in each
state in s upto es, clearly either th is running or not running. Together with len es = len
(s upto es), that implies

len es = len [s ′← s upto es. th ∈ running s ′]
+ len [s ′← s upto es. th 6∈ running s ′] (7)

The actions in es can be partitioned into the actions of th and the actions of threads
other than th. The latter can further be divided into actions of existing threads and the
actions to create new ones. Moreover, the actions of existing threads other than th are
by Thm 1 the actions of blockers. This gives rise to

len es = len (actions of {th} es)
+ len (filter isCreate es)
+ len (actions of blockers es)

(8)

Furthermore we know that an action of th in the intermediate states s upto es can only
be taken when th is running. Therefore

len (actions of {th} es) ≤ len [s ′← s upto es. th ∈ running s ′]

holds. Substituting this into (7) gives

len [s ′← s upto es. th 6∈ running s ′] ≤ len es− len (actions of {th} es)

into which we can substitute (8) yielding

len[s ′← s upto es. th 6∈ running s ′] ≤ len (filter isCreate es)
+len (actions of blockers es)

By our first assumption we know that the number of Create-events are bounded by the
bound BC. By our second assumption we can prove that the actions of all blockers is
bounded by the sum of bounds of the individual blocking threads, that is

len (actions of blockers es) ≤
∑

th ′ ∈ blockers. BND(th ′)

With this in place we can conclude our theorem. ut
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This theorem is the main conclusion we obtain for the Priority Inheritance Protocol. It
is based on the fact that the set of blockers is fixed at state s when th becomes the thread
with highest priority. Then no additional blocker of th can appear after the state s. And
in this way we can bound the number of states where the thread th with the highest
priority is prevented from running. Our bound does not depend on the restriction of
well-nested critical sections in the Priority Inheritance Protocol as imposed by Sha et
al.

5 Properties for an Implementation

While our formalised proof gives us confidence about the correctness of our model of
PIP, we found that the formalisation can even help us with efficiently implementing
it. For example Baker complained that calculating the current precedence in PIP is
quite “heavy weight” in Linux (see the Introduction). In our model of PIP the current
precedence of a thread in a state s depends on the precedences of all threads in its
subtree—a “global” transitive notion, which is indeed heavy weight (see the equation
for cprec shown in (6)). We can however improve upon this. For this recall the notion
of children of a thread th defined in (3). There a child is a thread that is only one “hop”
away from the thread th in the TDG (and waiting for th to release a resource). Using
children, we can prove the following lemma for more efficiently calculating cprec of a
thread th.

Lemma 2. If valid trace s then

cprec s th = Max (precs {th} s ∪ cprecs (children (TDG s) th) s).

That means the current precedence of a thread th can be computed by considering the
static precedence of th and the current precedences of the children of th. Their cprecs,
in general, need to be computed by recursively decending into deeper “levels” of the
TDG. However, the current precedence of a thread th, say, only needs to be recomputed
when (i) its static precedence is re-set or when (ii) one of its children changes its current
precedence or when (iii) the children set changes (for example in a V-event). If only
the static precedence or the children-set changes, then we can avoid the recursion and
compute the cprec of th locally. In such cases the recursion does not need to descend
into the corresponding subtree. Once the current precedence is computed in this more
efficient manner, the selection of the thread with highest precedence from a set of ready
threads is a standard scheduling operation and implemented in most operating systems.

Below we outline how our formalisation guides the efficient calculation of cprecs
in response to each kind of events.

Create th prio: We assume that the current state s and the next state e::s, whereby

e
def
= Create th prio, are both valid (meaning the event Create is allowed to occur in s).

In this situation we can show that

RAG (e::s) = RAG s,
cprec (e::s) th = prec th (e::s), and
If th ′ 6= th then cprec (e::s) th ′= cprec s th ′
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This means in an implementation we do not have to recalculate the RAG and also none
of the current precedences of the other threads. The current precedence of the created
thread th is just its precedence, namely the pair (prio, |s|).

Exit th: We again assume that the current state s and the next state e::s, whereby this

time e
def
= Exit th, are both valid. We can show that

RAG (e::s) = RAG s, and
If th ′ 6= th then cprec (e::s) th ′= cprec s th ′

This means again we do not have to recalculate the RAG and also not the current prece-
dences for the other threads. Since th is not alive anymore in state s, there is no need to
calculate its current precedence.

Set th prio: We assume that s and e::s with e
def
= Set th prio are both valid. We can

show that

RAG (e::s) = RAG s, and
If th ′ 6= th then cprec (e::s) th ′= cprec s th ′

The first property is again telling us we do not need to change the RAG. The second
shows that the cprec-values of all threads other than th are unchanged. The reason for
this is more subtle: Since th must be running, that is does not wait for any resource to
be released, it cannot be in any subtree of any other thread. So all current precedences
of other threads are unchanged.

V th cs: We assume that s and e::s with e being V th cs are both valid. We have to
consider two subcases: one where there is a thread to “take over” the released resource
cs, and one where there is not. Let us consider them in turn. Suppose in state s, the
thread th ′ takes over resource cs from thread th. We can prove

RAG (e::s) = RAG s − {(C cs, T th), (T th ′, C cs)} ∪ {(C cs, T th ′)}

which shows how the RAG needs to be changed. The next lemmas suggest how the
current precedences need to be recalculated. For threads that are not th and th ′ nothing
needs to be changed, since we can show

If th ′′ 6= th and th ′′ 6= th ′ then cprec (e::s) th ′′= cprec s th ′′ (9)

For th and th ′ we need to use Lemma 2 to recalculate their current precedence since
their children have changed. However, neither th and th ′ is element of the respective
children, which is shown by the following two facts:

th ′ /∈ children (TDG (e::s)) th
th /∈ children (TDG (e::s)) th ′ (10)

This means the recalculation of the cprec of th and th ′ can be done independently and
also done locally by only looking at the children: according to (9) and (10) none of the
cprecs of the children changes, just the children-sets changes by a V-event.
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In the other case where there is no thread that takes over cs, we can prove that the
updated RAG merely deletes the relevant edge and that no current precedence needs to
be recalculated for any thread th ′′.

RAG (e::s) = RAG s − {(C cs, T th)}
∀ th ′′. cprec (e::s) th ′′= cprec s th ′′

P th cs: We assume that s and e::s with e
def
= P th cs are both valid. We again have to

analyse two subcases, namely the one where cs is not locked, and one where it is. We
treat the former case first by showing that

RAG (e::s) = RAG s ∪ {(C cs, T th)}
∀ th ′′. cprec (e::s) th ′′= cprec s th ′′

This means we need to add a holding edge to the RAG. However, note that while the
RAG changes the corresponding TDG does not change. Together with the fact that the
precedences of all threads are unchanged, no cprec value is changed. Therefore, no
recalucation of the cprec value of any thread th ′′ is needed.

In the second case we know that resource cs is locked. We can show that

RAG (e::s) = RAG s ∪ {(T th, C cs)}
If th ′′ /∈ ancestors (TDG (e::s)) th then cprec (e::s) th ′′= cprec s th ′′

That means we have to add a waiting edge to the RAG. Furthermore the current prece-
dence for all threads that are not ancestors of th (in the new RAG or TDG) are un-
changed. For the ancestors of th we need to follow the edges in the TDG and recompute
the cprecs. Whereas in all other event we might have to make modifications to the RAG,
no recalculation of cprec depends on the RAG. This is the only case where the recalu-
lation needs to take the connections in the RAG into account. To do this we can start
from th and follow the children-edges to recompute the cprec of every thread encoun-
tered on the way using Lemma 2. This means the recomputation can be done locally
(level-by-level) in a bottom-up fashion. Since the RAG, and thus TDG, are loop free, this
procedure will always stop. The following lemma shows, however, that this procedure
can actually stop often earlier without having to consider all ancestors.

If th ′∈ ancestors (TDG (e::s)) th
th ′′∈ ancestors (TDG (e::s)) th ′ and
cprec (e::s) th ′= cprec s th ′

then cprec (e::s) th ′′= cprec s th ′′

This property states that if an intermediate cprec-value does not change (in this case
the cprec-value of th ′), then the procedure can also stop, because none of th ′ ancestor-
threads will have their current precedence changed.

As can be seen, a pleasing byproduct of our formalisation is that the properties in
this section closely inform an implementation of PIP, namely whether the RAG needs
to be reconfigured or current precedences need to be recalculated for an event. This
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information is provided by the lemmas we proved. We confirmed that our observations
translate into practice by implementing our version of PIP on top of PINTOS, a small
operating system written in C and used for teaching at Stanford University [19].7 While
there is no formal connection between our formalisation and the C-code shown below,
the results of the formalisation clearly shine through in the design of the code.

To implement PIP in PINTOS, we only need to modify the kernel functions cor-
responding to the events in our formal model. The events translate to the following
function interface in PINTOS:

Event PINTOS function
Create thread_create
Exit thread_exit
Set thread_set_priority
P lock_acquire
V lock_release

Our implicit assumption that every event is an atomic operation is ensured by the ar-
chitecture of PINTOS (which allows disabling of interrupts when some operations are
performed). The case where an unlocked resource is given next to the waiting thread
with the highest precedence is realised in our implementation by priority queues. We
implemented them as Braun trees [17], which provide efficient O(log n)-operations
for accessing and updating. In the code we shall describe below, we use the function
queue_insert, for inserting a new element into a priority queue, and the function
queue_update, for updating the position of an element that is already in a queue.
Both functions take an extra argument that specifies the comparison function used for
organising the priority queue.

Apart from having to implement relatively complex datastructures in C using point-
ers, our experience with the implementation has been very positive: our specification
and formalisation of PIP translates smoothly to an efficent implementation in PINTOS.
Let us illustrate this with the C-code for the function lock_acquire, shown in Fig-
ure 3. This function implements the operation of requesting and, if free, locking of a
resource by the current running thread. The convention in the PINTOS code is to use the
terminology locks rather than resources. A lock is represented as a pointer to the struc-
ture lock (Line 1). Lines 2 to 4 are taken from the original code of lock_acquire in
PINTOS. They contain diagnostic code: first, there is a check that the lock is a “valid”
lock by testing whether it is not NULL; second, a check that the code is not called
as part of an interrupt—acquiring a lock should only be initiated by a request from a
(user) thread, not from an interrupt; third, it is ensured that the current thread does not
ask twice for a lock. These assertions are supposed to be satisfied because of the as-
sumptions in PINTOS about how this code is called. If not, then the assertions indicate
a bug in PINTOS and the result will be a “kernel panic”.

Lines 6 and 7 of lock acquire make the operation of acquiring a lock atomic by
disabling all interrupts, but saving them for resumption at the end of the function (Line

7 An alternative would have been the small Xv6 operating system used for teaching at MIT [4,5].
However this operating system implements a simple round robin scheduler that lacks stubs for
dealing with priorities. This is inconvenient for our purposes.
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1 void lock_acquire (struct lock *lock)
2 { ASSERT (lock != NULL);
3 ASSERT (!intr_context());
4 ASSERT (!lock_held_by_current_thread (lock));
5
6 enum intr_level old_level;
7 old_level = intr_disable();
8 if (lock->value == 0) {
9 queue_insert(thread_cprec, &lock->wq, &thread_current()->helem);

10 thread_current()->waiting = lock;
11 struct thread *pt;
12 pt = lock->holder;
13 while (pt) {
14 queue_update(lock_cprec, &pt->held, &lock->helem);
15 if (!(update_cprec(pt)))
16 break;
17 lock = pt->waiting;
18 if (!lock) {
19 queue_update(higher_cprec, &ready_queue, &pt->helem);
20 break;
21 };
22 queue_update(thread_cprec, &lock->wq, &pt->helem);
23 pt = lock->holder;
24 };
25 thread_block();
26 } else {
27 lock->value--;
28 lock->holder = thread_current();
29 queue_insert(lock_prec, &thread_current()->held, &lock->helem);
30 };
31 intr_set_level(old_level);
32 }

Fig. 3. Our version of the lock acquire function for the small operating system
PINTOS. It implements the operation corresponding to a P-event.
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31). In Line 8, the interesting code with respect to scheduling starts: we first check
whether the lock is already taken (its value is then 0 indicating “already taken”, or 1
for being “free”). In case the lock is taken, we enter the if-branch inserting the current
thread into the waiting queue of this lock (Line 9). The waiting queue is referenced in
the usual C-way as &lock->wq. Next, we record that the current thread is waiting for
the lock (Line 10). Thus we established two pointers: one in the waiting queue of the
lock pointing to the current thread, and the other from the current thread pointing to
the lock. According to our specification in Section 2 and the properties we were able
to prove for P, we need to “chase” all the ancestor threads in the RAG and update their
current precedence; however we only have to do this as long as there is change in the
current precedence.

The “chase” is implemented in the while-loop in Lines 13 to 24. To initialise the
loop, we assign in Lines 11 and 12 the variable pt to the owner of the lock. Inside the
loop, we first update the precedence of the lock held by pt (Line 14). Next, we check
whether there is a change in the current precedence of pt. If not, then we leave the
loop, since nothing else needs to be updated (Lines 15 and 16). If there is a change,
then we have to continue our “chase”. We check what lock the thread pt is waiting for
(Lines 17 and 18). If there is none, then the thread pt is ready (the “chase” is finished
with finding a root in the RAG). In this case we update the ready-queue accordingly
(Lines 19 and 20). If there is a lock pt is waiting for, we update the waiting queue for
this lock and we continue the loop with the holder of that lock (Lines 22 and 23). After
all current precedences have been updated, we finally need to block the current thread,
because the lock it asked for was taken (Line 25).

If the lock the current thread asked for is not taken, we proceed with the else-branch
(Lines 26 to 30). We first decrease the value of the lock to 0, meaning it is taken now
(Line 27). Second, we update the reference of the holder of the lock (Line 28), and
finally update the queue of locks the current thread already possesses (Line 29). The
very last step is to enable interrupts again thus leaving the protected section.

Similar operations need to be implementated for the lock_release function,
which we however do not show. The reader should note though that we did not verify
our C-code. This is in contrast, for example, to the work on seL4, which actually verified
in Isabelle/HOL that their C-code satisfies its specification, though this specification
does not contain anything about PIP [11]. Our verification of PIP however provided
us with (formally proven) insights on how to design the C-code. It gave us confidence
that leaving the “chase” early, whenever there is no change in the calculated current
precedence, does not break the correctness of the algorithm.

6 Conclusion

The Priority Inheritance Protocol (PIP) is a classic textbook algorithm used in many
real-time operating systems in order to avoid the problem of Priority Inversion. Al-
though classic and widely used, PIP does have its faults: for example it does not prevent
deadlocks in cases where threads have circular lock dependencies.

We had two goals in mind with our formalisation of PIP: One is to make the no-
tions in the correctness proof by Sha et al. [24] precise so that they can be processed
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by a theorem prover. The reason is that a mechanically checked proof avoids the flaws
that crept into their informal reasoning. We achieved this goal: The correctness of PIP
now only hinges on the assumptions behind our formal model. The reasoning, which
is sometimes quite intricate and tedious, has been checked by Isabelle/HOL. We can
also confirm that Paulson’s inductive method for protocol verification [18] is quite suit-
able for our formal model and proof. The traditional application area of this method is
security protocols.

The second goal of our formalisation is to provide a specification for actually im-
plementing PIP. Textbooks, for example [26, Section 5.6.5], explain how to use various
implementations of PIP and abstractly discuss their properties, but surprisingly lack
most details important for a programmer who wants to implement PIP (similarly Sha
et al. [24]). That this is an issue in practice is illustrated by the email from Baker we
cited in the Introduction. We achieved also this goal: The formalisation allowed us to
efficently implement our version of PIP on top of PINTOS [19], a simple instructional
operating system for the x86 architecture. It also gives the first author enough data to
enable his undergraduate students to implement PIP (as part of their OS course). A
byproduct of our formalisation effort is that nearly all design choices for the imple-
mentation of PIP scheduler are backed up with a proved lemma. We were also able to
establish the property that the choice of the next thread which takes over a lock is irrel-
evant for the correctness of PIP. Moreover, we eliminated a crucial restriction present
in the proof of Sha et al.: they require that critical sections nest properly, whereas our
scheduler allows critical sections to overlap. What we are not able to do is to mechan-
ically “synthesise” an actual implementation from our formalisation. To do so for C-
code seems quite hard and is beyond current technology available for Isabelle. Also our
proof-method based on events is not “computational” in the sense of having a concrete
algorithm behind it: our formalisation is really more about the specification of PIP and
ensuring that it has the desired properties (the informal specification by Sha et al. did
not).

PIP is a scheduling algorithm for single-processor systems. We are now living in a
multi-processor world. Priority Inversion certainly occurs also there, see for example
[1,6]. However, there is very little “foundational” work about PIP-algorithms on multi-
processor systems. We are not aware of any correctness proofs, not even informal ones.
There is an implementation of a PIP-algorithm for multi-processors as part of the “real-
time” effort in Linux, including an informal description of the implemented scheduling
algorithm given in [23]. We estimate that the formal verification of this algorithm, in-
volving more fine-grained events, is a magnitude harder than the one we presented here,
but still within reach of current theorem proving technology. We leave this for future
work.

To us, it seems sound reasoning about scheduling algorithms is fiendishly difficult if
done informally by “pencil-and-paper”. We infer this from the flawed proof in the paper
by Sha et al. [24] and also from [22] where Regehr points out an error in a paper about
Preemption Threshold Scheduling [28]. The use of a theorem prover was invaluable to
us in order to be confident about the correctness of our reasoning (for example no corner
case can be overlooked). The most closely related work to ours is the formal verification
in PVS of the Priority Ceiling Protocol done by Dutertre [7]—another solution to the
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Priority Inversion problem, which however needs static analysis of programs in order
to avoid it. There have been earlier formal investigations into PIP [8,10,29], but they
employ model checking techniques. The results obtained by them apply, however, only
to systems with a fixed size, such as a fixed number of events and threads. In contrast,
our result applies to systems of arbitrary size. Moreover, our result is a good witness for
one of the major reasons to be interested in machine checked reasoning: gaining deeper
understanding of the subject matter.

Our formalisation consists of around 600 lemmas and overall 9200 lines of readable
and commented Isabelle/Isar code with a few apply-scripts interspersed. The formal
model of PIP is 310 lines long; our graph theory implementation using relations is 1615
lines; the basic properties of PIP take around 5000 lines of code; and the formal cor-
rectness proof 1250 lines. The properties relevant for an implementation require 1000
lines. The code of our formalisation can be downloaded from the Mercurial repository
at http://talisker.inf.kcl.ac.uk/cgi-bin/repos.cgi/pip.
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