--- a/progs/collatz_sol.scala Tue Nov 08 10:31:04 2016 +0000
+++ b/progs/collatz_sol.scala Tue Nov 08 10:37:18 2016 +0000
@@ -1,12 +1,17 @@
// Part 1 about the 3n+1 conceture
//=================================
+//(1) Complete the collatz function below. It should
+// recursively calculate the number of steps needed
+// until the collatz series reaches the number 1.
+// If needed you can use an auxilary function that
+// performs the recursion. The function should expect
+// arguments in the range of 1 to 10 Million.
-//(1) Complete the collatz function below. It should
-//recursively calculates the number of steps needed
-//number until a series ends with 1
-
-def collatz(n: Long): List[Long] = ...
+def collatz(n: Long): List[Long] =
+ if (n == 1) List(1) else
+ if (n % 2 == 0) (n::collatz(n / 2)) else
+ (n::collatz(3 * n + 1))
// an alternative that calculates the steps directly
@@ -16,12 +21,18 @@
(1 + collatz1(3 * n + 1))
-//(2)
+//(2) Complete the collatz bound function below. It should
+// calculuate how many steps are needed for each number
+// from 1 upto a bound and return the maximum number of
+// steps. You should expect bounds in the range of 1
+// upto 10 million.
+
def collatz_max(bnd: Int): Int = {
(for (i <- 1 to bnd) yield collatz(i).length).max
}
+// some testing harness
val bnds = List(10, 100, 1000, 10000, 100000, 1000000, 10000000)
for (bnd <- bnds) {