--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/templates3/knight1.scala Thu Nov 22 17:20:32 2018 +0000
@@ -0,0 +1,107 @@
+// Part 1 about finding Knight's tours
+//=====================================
+
+// If you need any auxiliary function, feel free to
+// implement it, but do not make any changes to the
+// templates below. Also have a look whether the functions
+// at the end are of any help.
+
+
+
+type Pos = (Int, Int) // a position on a chessboard
+type Path = List[Pos] // a path...a list of positions
+
+//(1) Complete the function that tests whether the position x
+// is inside the board and not yet element in the path.
+
+//def is_legal(dim: Int, path: Path, x: Pos) : Boolean = ...
+
+
+
+//(2) Complete the function that calculates for a position x
+// all legal onward moves that are not already in the path.
+// The moves should be ordered in a "clockwise" manner.
+
+
+//def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = ...
+
+
+//some test cases
+//
+//assert(legal_moves(8, Nil, (2,2)) ==
+// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
+//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
+//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
+// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
+//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
+
+
+//(3) Complete the two recursive functions below.
+// They exhaustively search for knight's tours starting from the
+// given path. The first function counts all possible tours,
+// and the second collects all tours in a list of paths.
+
+//def count_tours(dim: Int, path: Path) : Int = ...
+
+//def enum_tours(dim: Int, path: Path) : List[Path] = ...
+
+
+//(5) Implement a first-function that finds the first
+// element, say x, in the list xs where f is not None.
+// In that case Return f(x), otherwise None. If possible,
+// calculate f(x) only once.
+
+//def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = ...
+
+
+// test cases
+//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
+//
+//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo) // Some(List((4,0)))
+//first(List((1, 0),(2, 0),(3, 0)), foo) // None
+
+
+
+
+//(6) Implement a function that uses the first-function from (5) for
+// trying out onward moves, and searches recursively for a
+// knight tour on a dim * dim-board.
+
+
+//def first_tour(dim: Int, path: Path) : Option[Path] = ...
+
+
+
+
+
+
+/* Helper functions
+
+
+// for measuring time
+def time_needed[T](code: => T) : T = {
+ val start = System.nanoTime()
+ val result = code
+ val end = System.nanoTime()
+ println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
+ result
+}
+
+// can be called for example with
+// time_needed(count_tours(dim, List((0, 0))))
+// in order to print out the time that is needed for
+// running count_tours
+
+// for printing a board
+def print_board(dim: Int, path: Path): Unit = {
+ println
+ for (i <- 0 until dim) {
+ for (j <- 0 until dim) {
+ print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ")
+ }
+ println
+ }
+}
+
+
+*/