updated
authorChristian Urban <christian.urban@kcl.ac.uk>
Fri, 23 Feb 2024 11:31:36 +0000
changeset 483 1a51207780e6
parent 482 769bda18a43d
child 484 c4561fc667b7
child 485 19b75e899d37
updated
cws/calculation.pdf
cws/main_cw03.pdf
cws/main_cw03.tex
handouts/pep-ho.pdf
handouts/pep-ho.tex
main_testing5/bfc.scala
Binary file cws/calculation.pdf has changed
Binary file cws/main_cw03.pdf has changed
--- a/cws/main_cw03.tex	Mon Dec 25 01:10:55 2023 +0100
+++ b/cws/main_cw03.tex	Fri Feb 23 11:31:36 2024 +0000
@@ -574,11 +574,130 @@
 \end{tikzpicture}
 \end{tabular}  
 \end{center}
+
+%\end{document}
 \newpage
 
+\noindent
+For the calculation below, I prefer to use the more ``mathematical''
+notation for regular expressions. Therefore let us first look at this
+notation and the corresponding Scala code.
+
+\begin{center}
+\begin{tabular}{r@{\hspace{10mm}}l}
+  ``mathematical'' notation &  \\
+  for regular expressions & Scala code\smallskip\\
+  $\ZERO$ &  \texttt{ZERO}\\
+  $\ONE$  &  \texttt{ONE}\\
+  $c$     &  \texttt{CHAR(c)}\\
+  $\sum rs$ & \texttt{ALTs(rs)}\\  
+  $\prod rs$ & \texttt{SEQs(rs)}\\  
+  $r^*$ & \texttt{STAR(r)}
+\end{tabular}
+\end{center}
+
+\noindent
+My own convention is that \texttt{rs} stands for a list of regular
+expressions.  Also of note is that these are \textbf{all} regular
+expressions in Main 3 and the template file defines them as the
+(algebraic) datatype \texttt{Rexp}. A confusion might arise from the
+fact that there is also some shorthand notation for some regular
+expressions, namely
+
+\begin{lstlisting}[xleftmargin=10mm,numbers=none]
+def ALT(r1: Rexp, r2: Rexp) = ALTs(List(r1, r2))
+def SEQ(r1: Rexp, r2: Rexp) = SEQs(List(r1, r2))
+\end{lstlisting}
+  
+\noindent
+Since these are functions, everything of the form \texttt{ALT(r1, r2)}
+will immediately be translated into the regular expression
+\texttt{ALTs(List(r1, r2))} (similarly for \texttt{SEQ}).  Maybe even
+more confusing is that Scala allows one to define
+\textit{extensions} that provide an even shorter notation for
+\texttt{ALT} and \texttt{SEQ}, namely
+
+\begin{center}
+\begin{tabular}{lclcl}
+  \texttt{r1} $\sim$ \texttt{r2} & $\dn$ & \texttt{SEQ(r1, r2)} & $\dn$ & \texttt{SEQs(List(r1, r2))}\\
+  \texttt{r1} $|$ \texttt{r2} & $\dn$ & \texttt{ALT(r1, r2)}    & $\dn$ & \texttt{ALTs(List(r1, r2))}\\
+\end{tabular}
+\end{center}
+
+\noindent
+The right hand sides are the fully expanded definitions.
+The reason for this even shorter notation is that in the mathematical
+notation one often writes 
+
+\begin{center}
+\begin{tabular}{lcl}
+  $r_1 \;\cdot\; r_2$ & $\dn$ & $\prod\;[r_1, r_2]$\\
+  $r_1 + r_2$ & $\dn$ & $\sum\;[r_1, r_2]$
+\end{tabular}
+\end{center}
+
+\noindent
+The first one is for binary \textit{sequence} regular expressions and
+the second for binary \textit{alternative} regular expressions.
+The regex in question in the shorthand notation is $(a + 1)\cdot a$,
+which is the same as
+
+\[
+\prod\; [\Sigma\,[a, 1], a]
+\]
+
+\noindent
+or in Scala code
+
+\[
+\texttt{(CHAR('a') | ONE)} \;\sim\; \texttt{CHAR('a')}
+\]  
+
+\noindent
+Using the mathematical notation, the definition of $\textit{der}$ is
+given by the rules:
+
+\begin{center}
+\begin{tabular}{llcl}
+(1) & $\textit{der}\;c\;(\ZERO)$ & $\dn$ & $\ZERO$\\
+(2) & $\textit{der}\;c\;(\ONE)$  & $\dn$ & $\ZERO$\\
+(3) & $\textit{der}\;c\;(d)$     & $\dn$ & $\textit{if}\; c = d\;\textit{then} \;\ONE \; \textit{else} \;\ZERO$\\
+(4) & $\textit{der}\;c\;(\sum\;[r_1,..,r_n])$ & $\dn$ & $\sum\;[\textit{der}\;c\;r_1,..,\textit{der}\;c\;r_n]$\\
+(5) & $\textit{der}\;c\;(\prod\;[])$ & $\dn$ & $\ZERO$\\  
+(6) & $\textit{der}\;c\;(\prod\;r\!::\!rs)$ & $\dn$ & $\textit{if}\;\textit{nullable}(r)$\\
+   &   & & $\textit{then}\;(\prod\;(\textit{der}\;c\;r)\!::\!rs) + (\textit{der}\;c\;(\prod rs))$\\
+   &   & & $\textit{else}\;(\prod\;(\textit{der}\;c\;r)\!::\! rs)$\\
+(7) & $\textit{der}\;c\;(r^*)$ & $\dn$ & $(\textit{der}\;c\;r)\cdot (r^*)$\\
+\end{tabular}
+\end{center}
+
 
 
+\noindent
+Let's finally do the calculation for the derivative of the regular
+expression with respect to the letter $a$ (in red is in each line which
+regular expression is ana-lysed):
 
+\begin{center}
+\begin{tabular}{cll}
+      & $\textit{der}(a, \textcolor{red}{(a + 1) \cdot a})$ & by (6) and since $a + 1$ is nullable\\
+$\dn$ & $(\textit{der}(a, \textcolor{red}{a + 1})\cdot a) + \textit{der}(a, \,\prod\,[a])$  & by (4)\\
+$\dn$ & $((\textit{der}(a, \textcolor{red}{a}) + \texttt{der}(a, \ONE))\cdot a) + \textit{der}(a, \,\prod\,[a])$& by (3)\\
+$\dn$ & $((\ONE + \texttt{der}(a, \textcolor{red}{1}))\cdot a) + \textit{der}(a, \,\prod\,[a])$ & by (2)\\
+$\dn$ & $((\ONE + \ZERO)\cdot a) + \textit{der}(a, \textcolor{red}{\prod\,[a]})$ & by (6) and $a$ not being nullable\\
+$\dn$ & $((\ONE + \ZERO)\cdot a) + \prod\,[\texttt{der}(a, \textcolor{red}{a})]$ & by (3)\\
+$\dn$ & $((\ONE + \ZERO)\cdot a) + \prod\,[\ONE]$ \\  
+\end{tabular}  
+\end{center}
+
+\noindent
+Translating this result back into Scala code gives you
+
+\[
+\texttt{ALT(\,} \underbrace{\texttt{(ONE | ZERO)} \sim \texttt{CHAR('a')}}_{(\textbf{1} + \textbf{0})\,\cdot\, a}\;,\;\underbrace{\texttt{SEQs(List(ONE))}}_{\prod\,[\textbf{1}]}\texttt{)}
+\]
+
+ 
 
 \end{document}
 
Binary file handouts/pep-ho.pdf has changed
--- a/handouts/pep-ho.tex	Mon Dec 25 01:10:55 2023 +0100
+++ b/handouts/pep-ho.tex	Fri Feb 23 11:31:36 2024 +0000
@@ -124,7 +124,7 @@
 
     
 \begin{document}
-\fnote{\copyright{} Christian Urban, King's College London, 2017, 2018, 2019, 2020, 2021, 2022, 2023}
+\fnote{\copyright{} Christian Urban, King's College London, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024}
 
 %\begin{tcolorbox}[breakable,size=fbox,boxrule=1pt,pad at break*=1mm,colback=cellbackground,colframe=cellborder]
 %  abd
@@ -152,7 +152,8 @@
 the myriads of Java libraries. Unlike Java, however, Scala often allows
 programmers to write very concise and elegant code.  Some therefore say
 ``Scala is the better Java''.\footnote{from
-\url{https://www.slideshare.net/maximnovak/joy-of-scala}} 
+  \url{https://www.slideshare.net/maximnovak/joy-of-scala}, though this might
+be outdated as latest versions of Java are catching up somewhat} 
 
 A number of companies---the Guardian, Dualingo, Coursera, FourSquare,
 Netflix, LinkedIn, ITV to name a few---either use Scala exclusively in
@@ -1937,10 +1938,12 @@
 
 \subsection*{Conclusion}
 
-I hope you liked the short journey through the Scala language---but remember we 
-like you to take on board the functional programming point of view,
-rather than just learning another language. There is an interesting
-blog article about Scala by a convert:
+I hope you liked the short journey through the Scala language---but
+remember we like you to take on board the functional programming point
+of view, rather than just learning another language: Immutable
+functions are easier to trust, because they the same output on the
+same input. For the same reason they are easier to test and debug.
+There is an interesting blog article about Scala by a convert:
 
 \begin{center}
 \url{https://www.skedulo.com/tech-blog/technology-scala-programming/}
--- a/main_testing5/bfc.scala	Mon Dec 25 01:10:55 2023 +0100
+++ b/main_testing5/bfc.scala	Fri Feb 23 11:31:36 2024 +0000
@@ -1,5 +1,6 @@
-// Part 2 about a "Compiler" for the Brainf*** language
-//======================================================
+// Main Part 5 about a "Compiler" for the Brainf*** language
+//============================================================
+
 
 object M5b {
 
@@ -10,6 +11,15 @@
 // templates below.
 
 
+// DEBUGGING INFORMATION FOR COMPILERS!!!
+//
+// Compiler, even real ones, are fiendishly difficult to get
+// to produce correct code. One way to debug them is to run
+// example programs ``unoptimised''; and then optimised. Does
+// the optimised version still produce the same result?
+
+
+// for timing purposes
 def time_needed[T](n: Int, code: => T) = {
   val start = System.nanoTime()
   for (i <- 0 until n) code
@@ -17,296 +27,149 @@
   (end - start)/(n * 1.0e9)
 }
 
+
 type Mem = Map[Int, Int]
 
-
-import io.Source
+import scala.io.Source
 import scala.util._
 
-def load_bff(name: String) : String = 
-  Try(Source.fromFile(name)("ISO-8859-1").mkString).getOrElse("")
-
-def sread(mem: Mem, mp: Int) : Int = 
-  mem.getOrElse(mp, 0)
-
-def write(mem: Mem, mp: Int, v: Int) : Mem =
-  mem.updated(mp, v)
-
-def jumpRight(prog: String, pc: Int, level: Int) : Int = {
-  if (prog.length <= pc) pc 
-  else (prog(pc), level) match {
-    case (']', 0) => pc + 1
-    case (']', l) => jumpRight(prog, pc + 1, l - 1)
-    case ('[', l) => jumpRight(prog, pc + 1, l + 1)
-    case (_, l) => jumpRight(prog, pc + 1, l)
-  }
-}
+// ADD YOUR CODE BELOW
+//======================
 
-def jumpLeft(prog: String, pc: Int, level: Int) : Int = {
-  if (pc < 0) pc 
-  else (prog(pc), level) match {
-    case ('[', 0) => pc + 1
-    case ('[', l) => jumpLeft(prog, pc - 1, l - 1)
-    case (']', l) => jumpLeft(prog, pc - 1, l + 1)
-    case (_, l) => jumpLeft(prog, pc - 1, l)
-  }
-}
+def sread(mem: Mem, mp: Int) : Int = mem.getOrElse(mp, 0)
 
-def compute(prog: String, pc: Int, mp: Int, mem: Mem) : Mem = {
-  if (0 <= pc && pc < prog.length) { 
-    val (new_pc, new_mp, new_mem) = prog(pc) match {
-      case '>' => (pc + 1, mp + 1, mem)
-      case '<' => (pc + 1, mp - 1, mem)
-      case '+' => (pc + 1, mp, write(mem, mp, sread(mem, mp) + 1))
-      case '-' => (pc + 1, mp, write(mem, mp, sread(mem, mp) - 1))
-      case '.' => { print(sread(mem, mp).toChar); (pc + 1, mp, mem) }
-      case '['  => if (sread(mem, mp) == 0) (jumpRight(prog, pc + 1, 0), mp, mem) else (pc + 1, mp, mem) 
-      case ']'  => if (sread(mem, mp) != 0) (jumpLeft(prog, pc - 1, 0), mp, mem) else (pc + 1, mp, mem) 
-      case _ => (pc + 1, mp, mem)
-    }		     
-    compute(prog, new_pc, new_mp, new_mem)	
-  }
-  else mem
-}
-
-def run(prog: String, m: Mem = Map()) = compute(prog, 0, 0, m)
-
+def write(mem: Mem, mp: Int, v: Int) : Mem = mem + (mp -> v)
 
-// The baseline to what we can compare our "compiler"
-// implemented below. It should require something like 
-// 60 seconds for the calculation on my laptop
-//
-//time_needed(1, run(load_bff("benchmark.bf")))
-
-
-
-// DEBUGGING INFORMATION!!!
-//
-// Compiler, even real ones, are fiedishly difficult to get
-// to prduce correct code. The point is that for example for
-// the sierpinski program, they need to still generate code
-// that displays such a triangle. If yes, then one usually
-// can take comfort that all is well. If not, then something
-// went wrong during the optimisations.
-
-
-
-// (5) Write a function jtable that precomputes the "jump
-//     table" for a bf-program. This function takes a bf-program 
-//     as an argument and Returns a Map[Int, Int]. The 
-//     purpose of this map is to record the information
-//     that given on the position pc is a '[' or a ']',
-//     then to which pc-position do we need to jump next?
-// 
-//     For example for the program
-//    
-//       "+++++[->++++++++++<]>--<+++[->>++++++++++<<]>>++<<----------[+>.>.<+<]"
-//
-//     we obtain the map
-//
-//       Map(69 -> 61, 5 -> 20, 60 -> 70, 27 -> 44, 43 -> 28, 19 -> 6)
-//  
-//     This states that for the '[' on position 5, we need to
-//     jump to position 20, which is just after the corresponding ']'.
-//     Similarly, for the ']' on position 19, we need to jump to
-//     position 6, which is just after the '[' on position 5, and so
-//     on. The idea is to not calculate this information each time
-//     we hit a bracket, but just look up this information in the 
-//     jtable. You can use the jumpLeft and jumpRight functions
-//     from Part 1 for calculating the jtable.
-//
-//     Then adapt the compute and run functions from Part 1 in order 
-//     to take advantage of the information stored in the jtable. 
-//     This means whenever jumpLeft and jumpRight was called previously,
-//     you should look up the jump address in the jtable.
- 
-
-def jtable(pg: String) : Map[Int, Int] = 
-    (0 until pg.length).collect { pc => pg(pc) match {
-      case '[' => (pc -> jumpRight(pg, pc + 1, 0))
-      case ']' => (pc -> jumpLeft(pg, pc - 1, 0))
-    }}.toMap
-
+// (6)
+def empty_stack(len : Int, st : List[Int]) : Map[Int, Int] = st match {
+  case Nil => Map()
+  case n :: tail => empty_stack(len, tail) + (n -> len)
+}
+def jtable_helper(pg : List[Char], st : List[Int] = List(), index : Int = 0) : Map[Int, Int] = pg match {
+  case Nil => empty_stack(pg.length, st)
+  case '[' :: tail => jtable_helper(tail, index :: st, index + 1)
+  case ']' :: tail => st match {
+    case Nil => jtable_helper(tail, st, index + 1) + (index -> -1)
+    case n :: stail => jtable_helper(tail, stail, index + 1) + (n -> (index + 1)) + (index -> (n + 1))
+  }
+  case _ :: tail => jtable_helper(tail, st, index + 1)
+}
+def jtable(pg: String) : Map[Int, Int] = jtable_helper(pg.toList)
 
 // testcase
+//
 // jtable("""+++++[->++++++++++<]>--<+++[->>++++++++++<<]>>++<<----------[+>.>.<+<]""")
 // =>  Map(69 -> 61, 5 -> 20, 60 -> 70, 27 -> 44, 43 -> 28, 19 -> 6)
 
 
-def compute2(pg: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = {
-  if (0 <= pc && pc < pg.length) { 
-    val (new_pc, new_mp, new_mem) = pg(pc) match {
-      case '>' => (pc + 1, mp + 1, mem)
-      case '<' => (pc + 1, mp - 1, mem)
-      case '+' => (pc + 1, mp, write(mem, mp, sread(mem, mp) + 1))
-      case '-' => (pc + 1, mp, write(mem, mp, sread(mem, mp) - 1))
-      case '.' => { print(sread(mem, mp).toChar); (pc + 1, mp, mem) }
-      case '['  => if (sread(mem, mp) == 0) (tb(pc), mp, mem) else (pc + 1, mp, mem) 
-      case ']'  => if (sread(mem, mp) != 0) (tb(pc), mp, mem) else (pc + 1, mp, mem) 
-      case _ => (pc + 1, mp, mem)
-    }		     
-    compute2(pg, tb, new_pc, new_mp, new_mem)	
-  }
-  else mem
+def compute2(prog: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = 
+    if (pc < 0 || pc >= prog.length) mem else prog.charAt(pc) match {
+        case '>' => compute2(prog, tb, pc+1, mp+1, mem)
+        case '<' => compute2(prog, tb, pc+1, mp-1, mem)
+        case '+' => compute2(prog, tb, pc+1, mp, mem + (mp -> (sread(mem, mp) + 1)))
+        case '-' => compute2(prog, tb, pc+1, mp, mem + (mp -> (sread(mem, mp) - 1)))
+        case '.' => print(sread(mem, mp).toChar); compute2(prog, tb, pc+1, mp, mem)
+        case '[' => if (sread(mem, mp) == 0) compute2(prog, tb, tb.getOrElse(pc, -2), mp, mem)
+                    else compute2(prog, tb, pc+1, mp, mem)
+        case ']' => if (sread(mem, mp) == 0) compute2(prog, tb, pc+1, mp, mem)
+                    else compute2(prog, tb, tb.getOrElse(pc, -2), mp, mem)
+        case _ => compute2(prog, tb, pc+1, mp, mem)
 }
 
-
-def run2(pg: String, m: Mem = Map()) = 
-  compute2(pg, jtable(pg), 0, 0, m)
-
-//time_needed(1, run2(load_bff("benchmark.bf")))
-
-
-
-// (6) Write a function optimise which deletes "dead code" (everything
-// that is not a bf-command) and also replaces substrings of the form
-// [-] by a new command 0. The idea is that the loop [-] just resets the
-// memory at the current location to 0. In the compute3 and run3 functions
-// below you implement this command by writing the number 0 to mem(mp), 
-// that is write(mem, mp, 0). 
-//
-// The easiest way to modify a string in this way is to use the regular
-// expression """[^<>+-.\[\]""", which recognises everything that is 
-// not a bf-command and replace it by the empty string. Similarly the
-// regular expression """\[-\]""" finds all occurences of [-] and 
-// by using the Scala method .replaceAll you can repplace it with the 
-// string "0" standing for the new bf-command.
-
-def optimise(s: String) : String = {
-  s.replaceAll("""[^<>+-.\[\]]""","")
-   .replaceAll("""\[-\]""", "0")
-}
-
-
-def compute3(pg: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = {
-  if (0 <= pc && pc < pg.length) { 
-    val (new_pc, new_mp, new_mem) = pg(pc) match {
-      case '0' => (pc + 1, mp, write(mem, mp, 0))
-      case '>' => (pc + 1, mp + 1, mem)
-      case '<' => (pc + 1, mp - 1, mem)
-      case '+' => (pc + 1, mp, write(mem, mp, sread(mem, mp) + 1))
-      case '-' => (pc + 1, mp, write(mem, mp, sread(mem, mp) - 1))
-      case '.' => { print(sread(mem, mp).toChar); (pc + 1, mp, mem) }
-      case '['  => if (sread(mem, mp) == 0) (tb(pc), mp, mem) else (pc + 1, mp, mem) 
-      case ']'  => if (sread(mem, mp) != 0) (tb(pc), mp, mem) else (pc + 1, mp, mem) 
-      case _ => (pc + 1, mp, mem)
-    }		     
-    compute3(pg, tb, new_pc, new_mp, new_mem)	
-  }
-  else mem
-}
-
-def run3(pg: String, m: Mem = Map()) = { 
-  val pg_opt = optimise(pg)
-  compute3(pg_opt, jtable(pg_opt), 0, 0, m)
-}
-
+def run2(prog: String, m: Mem = Map()) = compute2(prog, jtable(prog), 0, 0, m)
 
 // testcases
-
-//println(optimise(load_bff("collatz.bf")))
-//optimise(load_bff("benchmark.bf"))          // should have inserted 0's
-//optimise(load_bff("mandelbrot.bf")).length  // => 11203
- 
-//time_needed(1, run3(load_bff("benchmark.bf")))
+// time_needed(1, run2(load_bff("benchmark.bf")))
+// time_needed(1, run2(load_bff("sierpinski.bf")))
 
 
 
-// (7)  Write a function combine which replaces sequences
-// of repated increment and decrement commands by appropriate
-// two-character commands. For example for sequences of +
-//
-//              orig bf-cmds  | replacement
-//            ------------------------------
-//              +             | +A 
-//              ++            | +B
-//              +++           | +C
-//                            |
-//              ...           |
-//                            | 
-//              +++....+++    | +Z
-//                (where length = 26)
-//
-//  Similar for the bf-command -, > and <. All other commands should
-//  be unaffected by this change.
-//
-//  Adapt the compute4 and run4 functions such that they can deal
-//  appropriately with such two-character commands.
+// (7) 
+
+def optimise(s: String) : String =
+  s.filter(List('>', '<', '+', '-', '[', ']', '.').contains(_)).replaceAllLiterally("[-]", "0")
 
-def splice(cs: List[Char], acc: List[(Char, Int)]) : List[(Char, Int)] = (cs, acc) match {
-  case (Nil, acc) => acc  
-  case ('[' :: cs, acc) => splice(cs, ('[', 1) :: acc)
-  case (']' :: cs, acc) => splice(cs, (']', 1) :: acc)
-  case ('.' :: cs, acc) => splice(cs, ('.', 1) :: acc)
-  case ('0' :: cs, acc) => splice(cs, ('0', 1) :: acc)
-  case (c :: cs, Nil) => splice(cs, List((c, 1)))
-  case (c :: cs, (d, n) :: acc) => 
-    if (c == d && n < 26) splice(cs, (c, n + 1) :: acc)
-    else splice(cs, (c, 1) :: (d, n) :: acc)
+def compute3(prog: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = 
+  if (pc < 0 || pc >= prog.length) mem else prog.charAt(pc) match {
+        case '>' => compute3(prog, tb, pc+1, mp+1, mem)
+        case '<' => compute3(prog, tb, pc+1, mp-1, mem)
+        case '+' => compute3(prog, tb, pc+1, mp, mem + (mp -> (sread(mem, mp) + 1)))
+        case '-' => compute3(prog, tb, pc+1, mp, mem + (mp -> (sread(mem, mp) - 1)))
+        case '.' => print(sread(mem, mp).toChar); compute3(prog, tb, pc+1, mp, mem)
+        case '[' => if (sread(mem, mp) == 0) compute3(prog, tb, tb.getOrElse(pc, -2), mp, mem)
+                    else compute3(prog, tb, pc+1, mp, mem)
+        case ']' => if (sread(mem, mp) == 0) compute3(prog, tb, pc+1, mp, mem)
+                    else compute3(prog, tb, tb.getOrElse(pc, -2), mp, mem)
+        case '0' => compute3(prog, tb, pc+1, mp, mem + (mp -> 0))
+        case _ => compute3(prog, tb, pc+1, mp, mem)
 }
 
-def spl(s: String) = splice(s.toList, Nil).reverse
-
-//spl(load_bff("benchmark.bf"))
-
-def combine(s: String) : String = {
-  (for ((c, n) <- spl(s)) yield c match {
-    case '>' => List('>', (n + '@').toChar)
-    case '<' => List('<', (n + '@').toChar)
-    case '+' => List('+', (n + '@').toChar)
-    case '-' => List('-', (n + '@').toChar)
-    case _ => List(c)
-  }).flatten.mkString
-}
+def run3(prog: String, m: Mem = Map()) = 
+  val optimized = optimise(prog)
+  compute3(optimized, jtable(optimized), 0, 0, m)
 
 
-//combine(load_bff("benchmark.bf"))
+// testcases
+//
+// optimise(load_bff("benchmark.bf"))          // should have inserted 0's
+// optimise(load_bff("mandelbrot.bf")).length  // => 11205 // this is wrong, it's 11203!
+// 
+// time_needed(1, run3(load_bff("benchmark.bf")))
 
-def compute4(pg: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = {
-  if (0 <= pc && pc < pg.length) { 
-    val (new_pc, new_mp, new_mem) = pg(pc) match {
-      case '0' => (pc + 1, mp, write(mem, mp, 0))
-      case '>' => (pc + 2, mp + (pg(pc + 1) - '@'), mem)
-      case '<' => (pc + 2, mp - (pg(pc + 1) - '@'), mem)
-      case '+' => (pc + 2, mp, write(mem, mp, sread(mem, mp) + (pg(pc + 1) - '@')))
-      case '-' => (pc + 2, mp, write(mem, mp, sread(mem, mp) - (pg(pc + 1) - '@')))
-      case '.' => { print(sread(mem, mp).toChar); (pc + 1, mp, mem) }
-      case '['  => if (sread(mem, mp) == 0) (tb(pc), mp, mem) else (pc + 1, mp, mem) 
-      case ']'  => if (sread(mem, mp) != 0) (tb(pc), mp, mem) else (pc + 1, mp, mem) 
-      case _ => (pc + 1, mp, mem)
-    }		     
-    compute4(pg, tb, new_pc, new_mp, new_mem)	
-  }
-  else mem
+// (8)
+def combine_helper(c : String, s : String) : String =
+  val temp1 = s.replaceAllLiterally(c*26, c ++ "Z").replaceAllLiterally(c*25, c ++ "Y").replaceAllLiterally(c*24, c ++ "X").replaceAllLiterally(c*23, c ++ "W")
+  val temp2 = temp1.replaceAllLiterally(c*22, c ++ "V").replaceAllLiterally(c*21, c ++ "U").replaceAllLiterally(c*20, c ++ "T").replaceAllLiterally(c*19, c ++ "S")
+  val temp3 = temp2.replaceAllLiterally(c*18, c ++ "R").replaceAllLiterally(c*17, c ++ "Q").replaceAllLiterally(c*16, c ++ "P").replaceAllLiterally(c*15, c ++ "O")
+  val temp4 = temp3.replaceAllLiterally(c*14, c ++ "N").replaceAllLiterally(c*13, c ++ "M").replaceAllLiterally(c*12, c ++ "L").replaceAllLiterally(c*11, c ++ "K")
+  val temp5 = temp4.replaceAllLiterally(c*10, c ++ "J").replaceAllLiterally(c*9, c ++ "I").replaceAllLiterally(c*8, c ++ "H").replaceAllLiterally(c*7, c ++ "G")
+  val temp6 = temp5.replaceAllLiterally(c*6, c ++ "F").replaceAllLiterally(c*5, c ++ "E").replaceAllLiterally(c*4, c ++ "D").replaceAllLiterally(c*3, c ++ "C")
+  val temp7 = temp6.replaceAllLiterally(c*2, c ++ "B").replaceAllLiterally(c ++ ">", c ++ "A>").replaceAllLiterally(c ++ "<", c ++ "A<")
+  val temp8 = temp7.replaceAllLiterally(c ++ "+", c ++ "A+").replaceAllLiterally(c ++ "-", c ++ "A-").replaceAllLiterally(c ++ "[", c ++ "A[")
+  temp8.replaceAllLiterally(c ++ "]", c ++ "A]").replaceAllLiterally(c ++ ".", c ++ "A.").replaceAllLiterally(c ++ "0", c ++ "A0")
+def combine(s: String) : String = 
+  val temp1 = combine_helper(">", s)
+  val temp2 = combine_helper("<", temp1)
+  val temp3 = combine_helper("+", temp2)
+  val temp4 = combine_helper("-", temp3)
+  temp4
+
+// testcase
+// combine(load_bff("benchmark.bf"))
+
+def compute4(prog: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = if (pc < 0 || pc >= prog.length) mem else prog.charAt(pc) match {
+  case '>' => val n = (prog.charAt(pc+1).toInt - 64)
+              compute4(prog, tb, pc+1, mp+n, mem)
+  case '<' => val n = (prog.charAt(pc+1).toInt - 64)
+              compute4(prog, tb, pc+1, mp-n, mem)
+  case '+' => val n = (prog.charAt(pc+1).toInt - 64)
+              compute4(prog, tb, pc+1, mp, mem + (mp -> (sread(mem, mp) + n)))
+  case '-' => val n = (prog.charAt(pc+1).toInt - 64)
+              compute4(prog, tb, pc+1, mp, mem + (mp -> (sread(mem, mp) - n)))
+  case '.' => print(sread(mem, mp).toChar); compute4(prog, tb, pc+1, mp, mem)
+  case '[' => if (sread(mem, mp) == 0) compute4(prog, tb, tb.getOrElse(pc, -2), mp, mem)
+              else compute4(prog, tb, pc+1, mp, mem)
+  case ']' => if (sread(mem, mp) == 0) compute4(prog, tb, pc+1, mp, mem)
+              else compute4(prog, tb, tb.getOrElse(pc, -2), mp, mem)
+  case '0' => compute4(prog, tb, pc+1, mp, mem + (mp -> 0))
+  case _ => compute4(prog, tb, pc+1, mp, mem)
 }
 
-def run4(pg: String, m: Mem = Map()) = { 
-  val pg_opt = combine(optimise(pg))
-  compute4(pg_opt, jtable(pg_opt), 0, 0, m)
-}
-
-// testcases
-//println(combine(optimise(load_bff("mandelbrot.bf").drop(123))))
-
-//combine(optimise(load_bff("benchmark.bf"))) // => """>A+B[<A+M>A-A]<A[[....."""
-
-//time_needed(1, run4(load_bff("benchmark.bf")))
-
-//time_needed(1, run(load_bff("sierpinski.bf"))) 
-//time_needed(1, run4(load_bff("sierpinski.bf"))) 
-
-//println(time_needed(1, run4(load_bff("mandelbrot.bf"))))
+// should call first optimise and then combine on the input string
+//
+def run4(prog: String, m: Mem = Map()) = 
+  val optimized = combine(optimise(prog))
+  compute4(optimized, jtable(optimized), 0, 0, m)
 
 
 
+// testcases
+// combine(optimise(load_bff("benchmark.bf"))) // => """>A+B[<A+M>A-A]<A[[....."""
+
+// testcases (they should now run much faster)
+// time_needed(1, run4(load_bff("benchmark.bf")))
+// time_needed(1, run4(load_bff("sierpinski.bf"))) 
+// time_needed(1, run4(load_bff("mandelbrot.bf")))
 
 
 }
-
-/*
-import CW10b._
-println(time_needed(1, run(load_bff("collatz.bf"))))
-println(time_needed(1, run2(load_bff("collatz.bf"))))
-println(time_needed(1, run3(load_bff("collatz.bf"))))
-println(time_needed(1, run4(load_bff("collatz.bf"))))
-*/