# HG changeset patch # User Christian Urban # Date 1479307038 0 # Node ID 9891c9fac37eaa6d62aca12b6d1bcc9fd21fbdba # Parent fdc2c6fb7a2469ee6fa66f8a03c6b0eeb9c9e4ea updated diff -r fdc2c6fb7a24 -r 9891c9fac37e cws/cw01.pdf Binary file cws/cw01.pdf has changed diff -r fdc2c6fb7a24 -r 9891c9fac37e cws/cw02.pdf Binary file cws/cw02.pdf has changed diff -r fdc2c6fb7a24 -r 9891c9fac37e cws/cw02.tex --- a/cws/cw02.tex Tue Nov 15 23:08:09 2016 +0000 +++ b/cws/cw02.tex Wed Nov 16 14:37:18 2016 +0000 @@ -16,13 +16,23 @@ \section*{Coursework 7 (Scala, Knight's Tour)} -This coursework is about searching and backtracking, and worth -10\%. The first part is due on 23 November at 11pm; the second, more -advanced part, is due on 30 November at 11pm. You are asked to -implement Scala programs that solve various versions of the +This coursework is worth 10\%. It is about searching and +backtracking. The first part is due on 23 November at 11pm; the +second, more advanced part, is due on 30 November at 11pm. You are +asked to implement Scala programs that solve various versions of the \textit{Knight's Tour Problem} on a chessboard. Make sure the files you submit can be processed by just calling \texttt{scala - <>}. + <>}.\bigskip + +\noindent +\textbf{Important:} Do not use any mutable data structures in your +submissions! They are not needed. This excluded the use of +\texttt{ListBuffer}s, for example. Do not use \texttt{return} in your +code! It has a different meaning in Scala, than in Java. Feel free to +copy any code you need from files \texttt{knight1.scala}, +\texttt{knight2.scala} and \texttt{knight3.scala}. Make sure the +functions you submit are defined on the ``top-level'' of Scala, not +inside a class or object. \subsection*{Disclaimer} @@ -78,7 +88,8 @@ knight's tour is \underline{not} closed (it is open) because the last step on field $(0, 4)$ is not within the reach of the first step on $(4, 4)$. It turns out there is no closed knight's tour on a $5\times -5$ board. But there are on a $6\times 6$ board and bigger, for example +5$ board. But there are on a $6\times 6$ board and on bigger ones, for +example \chessboard[maxfield=e5, pgfstyle= {[base,at={\pgfpoint{0pt}{-0.5ex}}]text}, @@ -146,15 +157,15 @@ markfields={f5, e6}, setpieces={Ng7, Nb2}] -\subsection*{Part 1 (6 Marks)} +\subsection*{Part 1 (7 Marks)} You are asked to implement the knight's tour problem such that the dimension of the board can be changed. Therefore most functions will -take the dimension as an argument. The fun with this problem is that -even for small chessbord dimensions it has already an incredably large -search space---finding a tour is like finding a needle in a -haystack. In the first task we want to see far we get with -exhaustively exploring the complete search space for small +take the dimension of the board as an argument. The fun with this +problem is that even for small chessbord dimensions it has already an +incredably large search space---finding a tour is like finding a +needle in a haystack. In the first task we want to see how far we get +with exhaustively exploring the complete search space for small chessboards.\medskip \noindent @@ -183,9 +194,10 @@ \subsubsection*{Tasks (file knight1.scala)} \begin{itemize} -\item[(1a)] Implement a is-legal-move function that takes a dimension, a path -and a position as argument and tests whether the position is inside -the board and not yet element in the path. \hfill[1 Mark] +\item[(1a)] Implement an is-legal-move function that takes a + dimension, a path and a position as argument and tests whether the + position is inside the board and not yet element in the + path. \hfill[1 Mark] \item[(1b)] Implement a legal-moves function that calculates for a position all legal onward moves. If the onward moves are @@ -193,15 +205,15 @@ ``12-oclock'' following in clockwise order. For example on an $8\times 8$ board for a knight on position $(2, 2)$ and otherwise empty board, the legal-moves function should produce the onward - positions + positions in this order: \begin{center} \texttt{List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))} \end{center} - in this order. If the board is not empty, then maybe some of the - moves need to be filtered out from this list. For a knight on field - $(7, 7)$ and an empty board, the legal moves are + If the board is not empty, then maybe some of the moves need to be + filtered out from this list. For a knight on field $(7, 7)$ and an + empty board, the legal moves are \begin{center} \texttt{List((6,5), (5,6))} @@ -210,16 +222,16 @@ \item[(1c)] Implement two recursive functions (count-tours and enum-tours). They each take a dimension and a path as - arguments. They exhaustively search for \underline{\bf open} tours - starting from the given path. The first function counts all possible - open tours (there can be none for certain board sizes) and the second + arguments. They exhaustively search for {\bf open} tours starting + from the given path. The first function counts all possible open + tours (there can be none for certain board sizes) and the second collects all open tours in a list of paths.\hfill[2 Marks] \end{itemize} \noindent \textbf{Test data:} For the marking, the functions in (1c) -will be called with board sizes up to $5 \times 5$. If you only search -for open tours on $5 \times 5$ board starting from field $(0, 0)$, -there are 304 of them. If you try out every field of a $5 \times +will be called with board sizes up to $5 \times 5$. If you search +for open tours on a $5 \times 5$ board starting only from field $(0, 0)$, +there are 304 of tours. If you try out every field of a $5 \times 5$-board as a starting field and add up all open tours, you obtain 1728. A $6\times 6$ board is already too large to be searched exhaustively.\footnote{For your interest, the number of open tours on @@ -231,8 +243,9 @@ \begin{itemize} \item[(2a)] Implement a first-function. This function takes a list of positions and a function $f$ as arguments. The function $f$ takes a - position as argument and produces an optional path. The idea behind - the first-function is as follows: + position as argument and produces an optional path. So its type is + \texttt{Pos => Option[Path]}. The idea behind the first-function is + as follows: \[ \begin{array}{lcl} @@ -245,12 +258,12 @@ \] \noindent That is, we want to find the first position where the - result of $f$ is not \texttt{None}.\newline\mbox{}\hfill[1 Mark] + result of $f$ is not \texttt{None}, if there is one.\mbox{}\hfill[1 Mark] -\item[(2b)] Implement a first-tour function. Using the first-function - from (2a), search recursively for an open tour. As there might not - be such a tour at all, the first-tour function needs to return an - \texttt{Option[Path]}.\hfill[2 Marks] +\item[(2b)] Implement a first-tour function that uses the + first-function from (2a), and searches recursively for an open tour. + As there might not be such a tour at all, the first-tour function + needs to return an \texttt{Option[Path]}.\hfill[2 Marks] \end{itemize} \noindent @@ -258,13 +271,13 @@ sizes of up to $8 \times 8$. -\subsection*{Part 2 (4 Marks)} +\subsection*{Part 2 (3 Marks)} As you should have seen in Part 1, a naive search for open tours -beyond $8 \times 8$ boards and also for searching for closed tours +beyond $8 \times 8$ boards and also searching for closed tours takes too much time. There is a heuristic (called Warnsdorf's rule) -that can speed up finding a tour. This heuristice states that a knight -is moved so that it always proceeds to the square from which the +that can speed up finding a tour. This heuristic states that a knight +is moved so that it always proceeds to the field from which the knight will have the \underline{fewest} onward moves. For example for a knight on field $(1, 3)$, the field $(0, 1)$ has the fewest possible onward moves, namely 2. @@ -281,7 +294,7 @@ \noindent Warnsdorf's rule states that the moves on the board above sould be -tried out in the order +tried in the order \[ (0, 1), (0, 5), (2, 1), (2, 5), (3, 4), (3, 2) @@ -295,11 +308,20 @@ \subsubsection*{Tasks (file knight3.scala)} \begin{itemize} -\item[(3a)] orderered-moves +\item[(3a)] Write a function ordered-moves that calculates a list of + onward moves like in (1b) but orders them according to the + Warnsdorf’s rule. That means moves with the fewest legal onward moves + should come first (in order to be tried out first). + +\item[(3b)] Implement a first-closed-tour-heuristic function that searches for a + \textbf{closed} tour on a $6\times 6$ board. It should use the + first-function from (2a) and tries out onwards moves according to + the ordered-moves function from (3a). It is more likely to find + a solution when started in the middle of the board (that is + position $(dimension / 2, dimension / 2)$). -\item[(3b)] first-closed tour heuristics; up to $6\times 6$ - -\item[(3c)] first tour heuristics; up to $50\times 50$ +\item[(3c)] Implement a first-tour-heuristic function for boards up to $50\times 50$. + It is the same function as in (3b) but searches for \textbf{open} tours. \end{itemize} \end{document} diff -r fdc2c6fb7a24 -r 9891c9fac37e progs/collatz_sol2.scala --- a/progs/collatz_sol2.scala Tue Nov 15 23:08:09 2016 +0000 +++ b/progs/collatz_sol2.scala Wed Nov 16 14:37:18 2016 +0000 @@ -15,7 +15,7 @@ // an alternative that calculates the steps directly -def collatz1(n: Long): Int = +def collatz1(n: Long): Long = if (n == 1) 1 else if (n % 2 == 0) (1 + collatz1(n / 2)) else (1 + collatz1(3 * n + 1)) @@ -37,13 +37,15 @@ // upto 1 million. def collatz_max(bnd: Long): (Long, Long) = { - (1L to bnd).view.map((i) => (collatz2(i, 1), i)).maxBy(_._1) + (1L to bnd).view.map((i) => (collatz1(i), i)).maxBy(_._1) } // some testing harness //val bnds = List(10, 100, 1000, 10000, 100000, 1000000) -val bnds = List(10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000) +val bnds = List(10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 2000000000) + + for (bnd <- bnds) { val (steps, max) = collatz_max(bnd) diff -r fdc2c6fb7a24 -r 9891c9fac37e progs/knight1.scala --- a/progs/knight1.scala Tue Nov 15 23:08:09 2016 +0000 +++ b/progs/knight1.scala Wed Nov 16 14:37:18 2016 +0000 @@ -1,76 +1,36 @@ -import scala.util._ +// Part 1 about finding and counting Knight's tours +//================================================== -class Computation[A,B](value: A, function: A => B) { - lazy val result = function(value) -} +type Pos = (Int, Int) // a position on a chessboard +type Path = List[Pos] // a path...a list of positions + +//(1a) Complete the function that tests whether the position +// is inside the board and not yet element in the path. + +def is_legal(dim: Int, path: Path)(x: Pos): Boolean = ... -def print_board(n: Int)(steps: List[(Int, Int)]): Unit = { - println - for (i <- 0 until n) { - for (j <- 0 until n) { - print(f"${steps.indexOf((i, j))}%3.0f ") - } - println - } -} - -def add_pair(x: (Int, Int))(y: (Int, Int)) = - (x._1 + y._1, x._2 + y._2) - -def is_legal(n: Int)(x: (Int, Int)) = - 0 <= x._1 && 0 <= x._2 && x._1 < n && x._2 < n - -def moves(n: Int)(steps: List[(Int, Int)])(x: (Int, Int)): List[(Int, Int)] = { - List((1, 2),(2, 1),(2, -1),(1, -2), - (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)).filter(is_legal(n)).filterNot(steps.contains(_)) -} - -def ordered_moves(n: Int)(steps: List[(Int, Int)])(x : (Int, Int)): List[(Int, Int)] = - moves(n)(steps)(x).sortBy(moves(n)(steps)(_).length) - -moves(8)(Nil)(1,3) -ordered_moves(8)(Nil)(1,3) -ordered_moves(8)(List((2, 4), (2, 6)))(1,3) +//(1b) Complete the function that calculates for a position +// all legal onward moves that are not already in the path. +// The moves should be ordered in a "clockwise" order. + +def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = ... -def first[A, B](xs: List[A], f: A => Set[B]): Set[B] = xs match { - case Nil => Set() - case x::xs => { - val result = f(x) - if (result == Set()) first(xs, f) else result - } -} - -// non-circular tour -def tour(n: Int)(steps: List[(Int, Int)]): Option[List[(Int, Int)]] = { - if (steps.length == n * n) Some(steps) - else - { val list = moves(n)(steps)(steps.head) map (x => new Computation(x, ((x:(Int, Int)) => tour(n)(x::steps)))) - val found = list.par find (_.result.isDefined) - found map (_.result.get) - } -} - -val n = 6 -println(s"simple tour: n = $n") - -val starts = for (i <- (0 until n).toList; - j <- (0 until n).toList) yield new Computation ((i, j), ((x:(Int, Int)) => tour(n)(x::Nil))) - -val found = starts.par find (_.result.isDefined) -print_board(n)((found map (_.result.get)).get) - -//for measuring time -def time_needed[T](i: Int, code: => T) = { - val start = System.nanoTime() - for (j <- 1 to i) code - val end = System.nanoTime() - (end - start)/(i * 1.0e9) -} - -//for (i <- 1 to 20) { -// println(i + ": " + "%.5f".format(time_needed(2, matches(EVIL1(i), "a" * i)))) -//} +//assert(legal_moves(8, Nil, (2,2)) == +// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) +//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) +//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == +// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) +//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) +//(1c) Complement the two recursive functions below. +// They exhaustively search for open tours starting from the +// given path. The first function counts all possible open tours, +// and the second collects all open tours in a list of paths. +def count_tours(dim: Int, path: Path): Int = ... + +def enum_tours(dim: Int, path: Path): List[Path] = ... + + diff -r fdc2c6fb7a24 -r 9891c9fac37e progs/knight1_sol.scala --- a/progs/knight1_sol.scala Tue Nov 15 23:08:09 2016 +0000 +++ b/progs/knight1_sol.scala Wed Nov 16 14:37:18 2016 +0000 @@ -27,9 +27,12 @@ def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = moves(x).filter(is_legal(dim, path)) -legal_moves(8, Nil, (2,2)) -legal_moves(8, Nil, (7,7)) - +assert(legal_moves(8, Nil, (2,2)) == + List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) +assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) +assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == + List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) +assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) def count_tours(dim: Int, path: Path): Int = { if (path.length == dim * dim) 1 diff -r fdc2c6fb7a24 -r 9891c9fac37e progs/knight2.scala --- a/progs/knight2.scala Tue Nov 15 23:08:09 2016 +0000 +++ b/progs/knight2.scala Wed Nov 16 14:37:18 2016 +0000 @@ -1,78 +1,21 @@ - -type Pos = (Int, Int) -type Path = List[Pos] - -def print_board(dim: Int, path: Path): Unit = { - println - for (i <- 0 until dim) { - for (j <- 0 until dim) { - print(f"${path.indexOf((i, j))}%3.0f ") - } - println - } -} - +// Part 2 about finding a single tour for a board +//================================================ -def add_pair(x: Pos)(y: Pos): Pos = - (x._1 + y._1, x._2 + y._2) - -def is_legal(dim: Int, path: Path)(x: Pos): Boolean = - 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) +// copy any function you need from file knight1.scala -def moves(x: Pos): List[Pos] = { - List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), - (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)) -} - -def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = - moves(x).filter(is_legal(dim, path)) - +type Pos = (Int, Int) // a position on a chessboard +type Path = List[Pos] // a path...a list of positions -// non-circle tours -/* -def tour(dim: Int, path: List[Pos]): List[List[Pos]] = { - if (path.length == dim * dim) // && moves(n)(path.head).contains(path.last)) - List(path) - else - (for (x <- legal_moves(dim, path, path.head)) yield tour(dim, x::path)).flatten -} -*/ +//(2a) Implement a first-function that finds the first +// element, say x, in the list xs where f is not None. +// In that case return f(x), otherwise none. -def tour(dim: Int, path: Path): Int = { - if (path.length == dim * dim) 1 - else - (for (x <- legal_moves(dim, path, path.head) yield tour(dim, x::path))).sum -} - - -def dtour(dim: Int): List[List[Pos]] = { - var counter = 100000000 +def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = ... - def etour(dim: Int, path: List[Pos]): List[List[Pos]] = { - counter = counter - 1 - if (counter <= 0) List() else - if (path.length == dim * dim) List(path) - else - (for (x <- legal_moves(dim, path, path.head)) yield etour(dim, x::path)).flatten - } - - (for (i <- (0 until dim).toList; - j <- (0 until dim).toList) yield etour(dim, List((i, j)))).flatten -} - - +//(2b) Implement a function that uses the first-function for +// trying out onward moves, and searches recursively for an +// *open* tour on a dim * dim-board. -//val n = 8 -val n = 5 -println(s"number simple tours: n = $n") - -//println(etour(n, List((0, 0))).size) - - - -for (d <- 9 to 9) { - println(s"${d} x ${d} " + dtour(d).length) -} - - +def first_tour(dim: Int, path: Path): Option[Path] = ... + diff -r fdc2c6fb7a24 -r 9891c9fac37e progs/knight2_sol.scala --- a/progs/knight2_sol.scala Tue Nov 15 23:08:09 2016 +0000 +++ b/progs/knight2_sol.scala Wed Nov 16 14:37:18 2016 +0000 @@ -1,9 +1,8 @@ // Part 2 about finding a single tour for a board //================================================ - -type Pos = (Int, Int) -type Path = List[Pos] +type Pos = (Int, Int) // a position on a chessboard +type Path = List[Pos] // a path...a list of positions def print_board(dim: Int, path: Path): Unit = { println diff -r fdc2c6fb7a24 -r 9891c9fac37e progs/knight3.scala --- a/progs/knight3.scala Tue Nov 15 23:08:09 2016 +0000 +++ b/progs/knight3.scala Wed Nov 16 14:37:18 2016 +0000 @@ -1,45 +1,65 @@ -import scala.util._ +// Part 3 about finding a single tour using the Warnsdorf Rule +//============================================================= + -def print_board(n: Int)(steps: List[(Int, Int)]): Unit = { - for (i <- 0 until n) { - for (j <- 0 until n) { - print(f"${steps.indexOf((i, j))}%3.0f ") +type Pos = (Int, Int) +type Path = List[Pos] + +def print_board(dim: Int, path: Path): Unit = { + println + for (i <- 0 until dim) { + for (j <- 0 until dim) { + print(f"${path.reverse.indexOf((i, j))}%3.0f ") } println } - //readLine() - System.exit(0) -} - -def add_pair(x: (Int, Int))(y: (Int, Int)) = - (x._1 + y._1, x._2 + y._2) - -def is_legal(n: Int)(x: (Int, Int)) = - 0 <= x._1 && 0 <= x._2 && x._1 < n && x._2 < n - -def moves(n: Int)(x: (Int, Int)): List[(Int, Int)] = { - List((1, 2),(2, 1),(2, -1),(1, -2), - (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)).filter(is_legal(n)) } -def ordered_moves(n: Int)(steps: List[(Int, Int)])(x : (Int, Int)): List[(Int, Int)] = - moves(n)(x).sortBy((x: (Int, Int)) => moves(n)(x).filterNot(steps.contains(_)).length) +def add_pair(x: Pos)(y: Pos): Pos = + (x._1 + y._1, x._2 + y._2) -moves(8)(1,3) -ordered_moves(8)(Nil)(1,3) -ordered_moves(8)(List((2, 4), (2, 6)))(1,3) +def is_legal(dim: Int, path: Path)(x: Pos): Boolean = + 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) + +def moves(x: Pos): List[Pos] = + List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), + (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)) -// non-circle tour parallel -def tour(n: Int)(steps: List[(Int, Int)]): Unit = { - if (steps.length == n * n && moves(n)(steps.head).contains(steps.last)) - print_board(n)(steps) - else - for (x <- moves(n)(steps.head).par; if (!steps.contains(x))) tour(n)(x :: steps) +def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = + moves(x).filter(is_legal(dim, path)) + +def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = + legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length) + + +def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { + case Nil => None + case x::xs => { + val result = f(x) + if (result.isDefined) result else first(xs, f) + } } -val n = 7 -println(s"circle tour parallel: n = $n") + +def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = { + if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path) + else + first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path)) +} + +for (dim <- 1 to 6) { + val t = first_closed_tour_heuristics(dim, List((dim / 2, dim / 2))) + println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) +} -val starts = for (i <- 0 until n; j <- 0 until n) yield (i, j) -starts.par.foreach((x:(Int, Int)) => tour(n)(List(x))) +def first_tour_heuristics(dim: Int, path: Path): Option[Path] = { + if (path.length == dim * dim) Some(path) + else + first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path)) +} + +for (dim <- 1 to 50) { + val t = first_tour_heuristics(dim, List((dim / 2, dim / 2))) + println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) +} diff -r fdc2c6fb7a24 -r 9891c9fac37e progs/knight3_sol.scala --- a/progs/knight3_sol.scala Tue Nov 15 23:08:09 2016 +0000 +++ b/progs/knight3_sol.scala Wed Nov 16 14:37:18 2016 +0000 @@ -1,65 +1,24 @@ -// Part 2 about finding a single tour for a board -//================================================ - - -type Pos = (Int, Int) -type Path = List[Pos] +// Part 3 about finding a single tour using the Warnsdorf Rule +//============================================================= -def print_board(dim: Int, path: Path): Unit = { - println - for (i <- 0 until dim) { - for (j <- 0 until dim) { - print(f"${path.reverse.indexOf((i, j))}%3.0f ") - } - println - } -} - -def add_pair(x: Pos)(y: Pos): Pos = - (x._1 + y._1, x._2 + y._2) +// copy any function you need from files knight1.scala and +// knight2.scala -def is_legal(dim: Int, path: Path)(x: Pos): Boolean = - 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) - -def moves(x: Pos): List[Pos] = - List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), - (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)) - -def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = - moves(x).filter(is_legal(dim, path)) - -def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = - legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length) +type Pos = (Int, Int) // a position on a chessboard +type Path = List[Pos] // a path...a list of positions +//(3a) Complete the function that calculates a list of onward +// moves like in (1b) but orders them according to the Warnsdorf’s +// rule. That means moves with the fewest legal onward moves +// should come first. -def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { - case Nil => None - case x::xs => { - val result = f(x) - if (result.isDefined) result else first(xs, f) - } -} - - -def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = { - if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path) - else - first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path)) -} +def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = .. -for (dim <- 1 to 7) { - val t = first_closed_tour_heuristics(dim, List((dim / 2, dim / 2))) - println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) -} - +//(3b) Complete the function that searches for a single *closed* +// tour using the ordered moves function. -def first_tour_heuristics(dim: Int, path: Path): Option[Path] = { - if (path.length == dim * dim) Some(path) - else - first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path)) -} +def first_closed_tour_heuristic(dim: Int, path: Path): Option[Path] = ... -for (dim <- 1 to 50) { - val t = first_tour_heuristics(dim, List((dim / 2, dim / 2))) - println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) -} +//(3c) Sama as (3b) but searches for *open* tours. + +def first_tour_heuristic(dim: Int, path: Path): Option[Path] = ...