# HG changeset patch # User Christian Urban # Date 1478369241 0 # Node ID 48a477fdef2176b85601c8ffa3cc2b56287be55f # Parent ab77f6006f1fdb62fcb182eb8949ca7c3ee7edd6 updated diff -r ab77f6006f1f -r 48a477fdef21 cws/cw01.tex --- a/cws/cw01.tex Sat Nov 05 17:11:47 2016 +0000 +++ b/cws/cw01.tex Sat Nov 05 18:07:21 2016 +0000 @@ -4,18 +4,12 @@ \begin{document} -\section*{Coursework 1 (Strand 1)} +\section*{Coursework 6 (Scala)} -This coursework is worth 4\% and is due on 25 October at -16:00. You are asked to implement a regular expression matcher -and submit a document containing the answers for the questions -below. You can do the implementation in any programming -language you like, but you need to submit the source code with -which you answered the questions, otherwise a mark of 0\% will -be awarded. You can submit your answers in a txt-file or pdf. -Code send as code. - - +This coursework is about Scala and is worth 10\%. The first part is +due on 16 November at 11:00, and the second part on 23 November. You +are asked to implement a three programs about list manipulations and +recursion. \subsubsection*{Disclaimer} @@ -25,189 +19,11 @@ uploaded to KEATS, which you can freely use.\bigskip -\subsubsection*{Task} - -The task is to implement a regular expression matcher based on -derivatives of regular expressions. The implementation should -be able to deal with the usual (basic) regular expressions - -\[ -\ZERO,\; \ONE,\; c,\; r_1 + r_2,\; r_1 \cdot r_2,\; r^* -\] - -\noindent -but also with the following extended regular expressions: - -\begin{center} -\begin{tabular}{ll} -$[c_1 c_2 \ldots c_n]$ & a range of characters\\ -$r^+$ & one or more times $r$\\ -$r^?$ & optional $r$\\ -$r^{\{n,m\}}$ & at least $n$-times $r$ but no more than $m$-times\\ -$\sim{}r$ & not-regular expression of $r$\\ -\end{tabular} -\end{center} - -\noindent In the case of $r^{\{n,m\}}$ you can assume the -convention that $0 \le n \le m$. The meanings of the extended -regular expressions are - -\begin{center} -\begin{tabular}{r@{\hspace{2mm}}c@{\hspace{2mm}}l} -$L([c_1 c_2 \ldots c_n])$ & $\dn$ & $\{[c_1], [c_2], \ldots, [c_n]\}$\\ -$L(r^+)$ & $\dn$ & $\bigcup_{1\le i}. L(r)^i$\\ -$L(r^?)$ & $\dn$ & $L(r) \cup \{[]\}$\\ -$L(r^{\{n,m\}})$ & $\dn$ & $\bigcup_{n\le i \le m}. L(r)^i$\\ -$L(\sim{}r)$ & $\dn$ & $\Sigma^* - L(r)$ -\end{tabular} -\end{center} - -\noindent whereby in the last clause the set $\Sigma^*$ stands -for the set of \emph{all} strings over the alphabet $\Sigma$ -(in the implementation the alphabet can be just what is -represented by, say, the type \texttt{Char}). So $\sim{}r$ -means `all the strings that $r$ cannot match'. - -Be careful that your implementation of \textit{nullable} and -\textit{der} satisfies for every $r$ the following two -properties (see also Question 2): - -\begin{itemize} -\item $\textit{nullable}(r)$ if and only if $[]\in L(r)$ -\item $L(der\,c\,r) = Der\,c\,(L(r))$ -\end{itemize} - -\noindent {\bf Important!} Your implementation should have -explicit cases for the basic regular expressions, but also -explicit cases for the extended regular expressions. That -means do not treat the extended regular expressions by just -translating them into the basic ones. See also Question 2, -where you are asked to explicitly give the rules for -\textit{nullable} and \textit{der} for the extended regular -expressions. - - -\subsection*{Question 1} - -What is your King's email address (you will need it in -Question 3)? - -\subsection*{Question 2} - -This question does not require any implementation. From the -lectures you have seen the definitions for the functions -\textit{nullable} and \textit{der} for the basic regular -expressions. Give the rules for the extended regular -expressions: - -\begin{center} -\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} -$\textit{nullable}([c_1 c_2 \ldots c_n])$ & $\dn$ & $?$\\ -$\textit{nullable}(r^+)$ & $\dn$ & $?$\\ -$\textit{nullable}(r^?)$ & $\dn$ & $?$\\ -$\textit{nullable}(r^{\{n,m\}})$ & $\dn$ & $?$\\ -$\textit{nullable}(\sim{}r)$ & $\dn$ & $?$\medskip\\ -$der\, c\, ([c_1 c_2 \ldots c_n])$ & $\dn$ & $?$\\ -$der\, c\, (r^+)$ & $\dn$ & $?$\\ -$der\, c\, (r^?)$ & $\dn$ & $?$\\ -$der\, c\, (r^{\{n,m\}})$ & $\dn$ & $?$\\ -$der\, c\, (\sim{}r)$ & $\dn$ & $?$\\ -\end{tabular} -\end{center} +\subsubsection*{Part 1 (3 Marks)} -\noindent -Remember your definitions have to satisfy the two properties - -\begin{itemize} -\item $\textit{nullable}(r)$ if and only if $[]\in L(r)$ -\item $L(der\,c\,r)) = Der\,c\,(L(r))$ -\end{itemize} - -\subsection*{Question 3} - -Implement the following regular expression for email addresses - -\[ -([a\mbox{-}z0\mbox{-}9\_\!\_\,.-]^+)\cdot @\cdot ([a\mbox{-}z0\mbox{-}9\,.-]^+)\cdot .\cdot ([a\mbox{-}z\,.]^{\{2,6\}}) -\] - -\noindent and calculate the derivative according to your email -address. When calculating the derivative, simplify all regular -expressions as much as possible by applying the -following 7 simplification rules: - -\begin{center} -\begin{tabular}{l@{\hspace{2mm}}c@{\hspace{2mm}}ll} -$r \cdot \ZERO$ & $\mapsto$ & $\ZERO$\\ -$\ZERO \cdot r$ & $\mapsto$ & $\ZERO$\\ -$r \cdot \ONE$ & $\mapsto$ & $r$\\ -$\ONE \cdot r$ & $\mapsto$ & $r$\\ -$r + \ZERO$ & $\mapsto$ & $r$\\ -$\ZERO + r$ & $\mapsto$ & $r$\\ -$r + r$ & $\mapsto$ & $r$\\ -\end{tabular} -\end{center} - -\noindent Write down your simplified derivative in a readable -notation using parentheses where necessary. That means you -should use the infix notation $+$, $\cdot$, $^*$ and so on, -instead of code. - -\subsection*{Question 4} - -Suppose \textit{[a-z]} stands for the range regular expression -$[a,b,c,\ldots,z]$. Consider the regular expression $/ \cdot * \cdot -(\sim{}([a\mbox{-}z]^* \cdot * \cdot / \cdot [a\mbox{-}z]^*)) \cdot * -\cdot /$ and decide wether the following four strings are matched by -this regular expression. Answer yes or no. +\subsubsection*{Part 2 (3 Marks)} -\begin{enumerate} -\item \texttt{"/**/"} -\item \texttt{"/*foobar*/"} -\item \texttt{"/*test*/test*/"} -\item \texttt{"/*test/*test*/"} -\end{enumerate} - -\noindent -Also test your regular expression matcher with the regular -expression $a^{\{3,5\}}$ and the strings - -\begin{enumerate} -\setcounter{enumi}{4} -\item \texttt{aa} -\item \texttt{aaa} -\item \texttt{aaaaa} -\item \texttt{aaaaaa} -\end{enumerate} - -\noindent -Does your matcher produce the expected results? - -\subsection*{Question 5} - -Let $r_1$ be the regular expression $a\cdot a\cdot a$ and $r_2$ be -$(a^{\{19,19\}}) \cdot (a^?)$. Decide whether the following three -strings consisting of $a$s only can be matched by $(r_1^+)^+$. -Similarly test them with $(r_2^+)^+$. Again answer in all six cases -with yes or no. \medskip - -\noindent -These are strings are meant to be entirely made up of $a$s. Be careful -when copy-and-pasting the strings so as to not forgetting any $a$ and -to not introducing any other character. - -\begin{enumerate} -\item \texttt{"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ -aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ -aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"} -\item \texttt{"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ -aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ -aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"} -\item \texttt{"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ -aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ -aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"} -\end{enumerate} - +\subsubsection*{Part 3 (4 Marks)} \end{document} diff -r ab77f6006f1f -r 48a477fdef21 progs/knight.scala --- a/progs/knight.scala Sat Nov 05 17:11:47 2016 +0000 +++ b/progs/knight.scala Sat Nov 05 18:07:21 2016 +0000 @@ -43,7 +43,7 @@ if (steps.length == n * n && moves(n)(steps.head).contains(steps.last)) print_board(n)(steps) else - for (x <- moves(n)(steps.head).par; if (!steps.contains(x))) ctour(n)(x :: steps) + for (x <- moves(n)(steps.head); if (!steps.contains(x))) ctour(n)(x :: steps) } @@ -51,7 +51,7 @@ if (steps.length == n * n && moves(n)(steps.head).contains(steps.last)) print_board(n)(steps) else - for (x <- ordered_moves(n)(steps)(steps.head).par; if (!steps.contains(x))) faster_tour(n)(x :: steps) + for (x <- ordered_moves(n)(steps)(steps.head); if (!steps.contains(x))) faster_tour(n)(x :: steps) } @@ -65,7 +65,6 @@ } -/* val n2 = 6 println(s"circle tour: n = $n2") @@ -74,9 +73,9 @@ ctour(n2)(List((i, j))) } } -*/ + -val n3 = 9 +val n3 = 8 println(s"fast circle tour: n = $n3") Try { diff -r ab77f6006f1f -r 48a477fdef21 progs/live.scala --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/progs/live.scala Sat Nov 05 18:07:21 2016 +0000 @@ -0,0 +1,34 @@ +import scala.annotation.tailrec + + +def collatz(n: Int): List[Int] = + if (n == 1) List(1) else + if (n % 2 == 0) (n::collatz(n / 2)) else + (n::collatz(3 * n + 1)) + +def collatz1(n: Int): Int = + if (n == 1) 1 else + if (n % 2 == 0) (1 + collatz1(n / 2)) else + (1 + collatz1(3 * n + 1)) + +@tailrec +def collatz2(n: BigInt, acc: Int): Int = + if (n == 1) acc else + if (n % 2 == 0) collatz2(n / 2, acc + 1) else + collatz2(3 * n + 1, acc + 1) + +collatz(1) +collatz(2) +collatz(3) +collatz(4) +collatz(5) +collatz(6) +collatz(7) +collatz(8) +collatz(9) +collatz(100000) +println((for (i <- 1 to 100000) yield collatz(i).length).max) +println((for (i <- 1 to 100000) yield collatz1(i)).max) +println((for (i <- 1 to 1000000) yield collatz2(i, 1)).max) +println((for (i <- (1 to 10000000).par) yield collatz2(i, 1)).max) +println((for (i <- (1 to 100000000).par) yield collatz2(i, 1)).max)