Evil Wordle Game (Scala, 7 Marks)

“C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do, it blows your whole leg off.”

— Bjarne Stroustrup (creator of the C++ language)

You are asked to implement a Scala program for making the popular Wordle
game as difficult as possible.

A Important

* Make sure the files you submit can be processed by just calling
scala-cli compile <<filename.scala>> on the command line.! Use
the template files provided and do not make any changes to arguments of
functions or to any types. You are free to implement any auxiliary func-
tion you might need.

* Do not leave any test cases running in your code because this might
slow down your program! Comment out test cases before submission,
otherwise you might hit a time-out.

* Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot create new Arrays or ListBuffers,
for example.

¢ Do not use return in your code! It has a different meaning in Scala than
in Java. It changes the meaning of your program, and you should never
use it.

* Do not use var! This declares a mutable variable. Only use val!

* Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
30 seconds on my laptop.

A Disclaimer

It should be understood that the work you submit represents your own effort!
You have implemented the code entirely on your own. You have not copied
from anyone else. Do not be tempted to ask Copilot for help or do any other
shenanigans like this! An exception is the Scala code I showed during the lec-
tures or uploaded to KEATS, which you can freely use.

L All major OSes, including Windows, have a command line. So there is no good reason to not
download scala-cli, install it and run it on your own computer. Just do it!



Reference Implementation

Like the C++ part, the Scala part works like this: you push your files to GitHub
and receive (after sometimes a long delay) some automated feedback. In the
end we will take a snapshot of the submitted files and apply an automated
marking script to them.

In addition, the Scala part comes with a reference implementation in form of
jar-files. This allows you to run any test cases on your own computer. For ex-
ample you can call scala-clionthe command line with the option - -extra-jars
wordle.jar and then query any function from the template file. Say you want
to find out what the function produces: for this you just need to prefix it with
the object name M2. If you want to find out what these functions produce for
the list List("a", "b", "b"), you would type something like:

$ scala-cli --extra-jars wordle.jar
scala> val secretsURL =
| """https://nms.kcl.ac.uk/christian.urban/wordle.txt

scala> M2.get_wordle_list(secretsURL)
val res@: List[String] = List(aahed, aalii, ...)

Hints

Useful data functions: Source.fromURL, Source.fromFile for obtaining a web-
page and reading a file, .getOrElse(..,..) allows to query a Map, but also
gives a default value if the Map is not defined, a Map can be “updated’ by using
+, .contains and .filter can test whether an element is included in a list, and
respectively filter out elements in a list, . sortBy(_._2) sorts a list of pairs ac-
cording to the second elements in the pairs—the sorting is done from smallest
to highest, . groupBy orders lists according to same elements .



Main Part 2 (7 Marks, file wordle.scala)

You probably know the game of Wordle? where you are supposed to guess a
five-letter word. The feedback for guesses can help with the next guess (green
letters are correct, orange letters are present, but in the wrong place). For ex-

ample:

The idea of the program to be implemented here is to make the Wordle game
as evil as possible by finding words that are the most difficult to guess. A word

list of five-letter words is available from

https://nms.kcl.ac.uk/christian.urban/wordle.txt

(78 KByte)

In your program you need to download this list and implement some functions
that in the end select the most difficult words (given an input from the user). If
bandwidth is an issue for you, download the file locally, but in the submitted
version use Source.fromURL instead of Source.fromFile.

Tasks

(1) Implement the function get_wordle_list which takes an URL-string as
argument and requests the corresponding file. The function should re-
turn the word list appropriately broken up into lines. The result should
be a list of strings (the lines in the file). In case the url does not produce a

file, return the empty list.

In what follows we will use secrets to refer to the list of words listed in

wordle.txt.

[0.5 Marks]

(2) Implement a polymorphic function removeN, which removes n occurrences
of an element from a list (if this element is less than n times present, then

remove all occurrences). For example

removeN(List(1,2,3,2,1), 3, 2)
removeN(List(1,2,3,2,1), 2, 1)
removeN(List(1,2,3,2,1), 2, 2)
removeN(List(1,2,3,2,1), 1, 1)
removeN(List(1,2,3,2,1), 1, 3)
removeN(List(1,2,3,2,1), 0, 2)

2https://en .wikipedia.org/wiki/Wordle

> List(1,
> List(1,

List(1,
List(2,
List(2,
List(1,

-

-

-

-

N WWwWww whN
-

-

2,
2,
1)
2,
2)
3,

1)
1)

1)

2, 1)


https://nms.kcl.ac.uk/christian.urban/wordle.txt
https://en.wikipedia.org/wiki/Wordle

©)

4)

Make sure you only remove at most # occurrences of the element from the
list. This function should work for lists of integers but also lists of chars,
strings etc.

[0.5 Marks]

Implement a function score that calculates the feedback for a word against
a secret word using the rules of the Wordle game. The output of score
should be a list of 5 elements of type Tip representing three outcomes: a
letter in the correct position, a letter that is present, but not in the correct
position and a letter that is absent. For example given the secret word
”chess” the score for the word ”caves” is

List(Correct, Absent, Absent, Present, Correct)

You have to be careful with multiple occurrences of letters. For example
the secret ”chess” with the guess “swiss” should produce

List(Absent, Absent, Absent, Correct, Correct)

even though the first 's" in “swiss” is present in the secret word, the s’
are already ‘used up’ by the two letters that are correct. To implement
this you need to implement first a function pool which calculates all the
letters in a secret that are not correct in a word. For example

pool("chess", "caves" => List(h, e, s)
pool("chess", "swiss" => List(c, h, e)

Now the helper function aux can analyse the arguments secret and word
recursively letter-by-letter and decide: if the letters are the same, then
return Correct for the corresponding position. If they are not the same,
but the letter is in the pool, then return Present and also remove this letter
from the pool in the next recursive call of aux. Otherwise return Absent
for the corresponding position. The function score is a wrapper for the
function aux calling aux with the appropriate arguments (recall what is
calculated with pool). [2 Marks]

Implement a function eval that gives an integer value to each of the Tips

such that

eval (Correct) ECIRET)
eval (Present) def
eval (Absent) = 0

The function iscore then takes an output of score and sums up all cor-
responding values. For example for

iscore("chess", "caves" => 21
iscore("chess", "swiss" => 20



©)

(6)

[0.5 Marks]

The function evil takes a list of secrets (the list from Task 1) and a word as
arguments, and calculates the list of words with the lowest score (remem-
ber we want to make the Wordle game as difficult as possible —therefore
when the user gives us a word, we want to find the secrets that produce
the lowest score). For this implement a helper function lowest that goes
through the secrets one-by-one and calculates the score. The argument
current is the score of the “currently” found secrets. When the function
lowest is called for the first time then this will be set to the maximum in-
teger value Int.MaxValue. The accumulator will be first empty. If a secret
is found with the same score as current then this word is added to the
accumulator. If the secret has a lower score, then the accumulator will be
discarded and this secret will be the new accumulator. If the secret has a
higher score, then it can be ignored. For example evil (the wrapper for
lowest) generates

evil(secrets, "stent").length => 1907
evil(secrets, "hexes").length => 2966
evil(secrets, "horse").length => 1203
evil(secrets, "hoise").length => 971
evil(secrets, "house").length => 1228

where secrets is the list generated under Task 1. In all cases above the
iscore of the resulting secrets is 0, but this does not need to be the case in
general.

[1.5 Marks]

The secrets generated in Task 5 are the ones with the lowest score with
respect to the word. You can think of these as the secrets that are furthest
“away” from the given word. This is already quite evil for a secret word —
remember we can choose a secret after a user has given a first word. Now
we want to make it even more evil by choosing words that have the most
obscure letters. For this we calculate the frequency of how many times
certain letters occur in our secrets list (see Task 1). The frequency of the
letter c, say, is given by the formula

def number of occurrences of ¢
fregc) =1 — number of all letters

That means that letters that occur fewer times in our secrets have a higher
frequency. For example the letter "y’ has the frequency 0.9680234350909651
while the much more often occurring letter ‘e’ has only 0.897286463151403
(all calculations should be done with Doubles).

The function frequencies should calculate the frequencies for all lower-
case letters by generating a Map from letters (Char) to Doubles (frequen-
cies).

[1 Mark]



(7) In this task we want to use the output of evil, rank each string in the gen-
erated set and then filter out the strings that are ranked highest (the ones
with the most obscure letters). This list of strings often contains only a
single word, but in general there might be more (see below). First imple-
ment a function rank that takes a frequency map (from 6) and a string as
arguments. In the testcases, the frequency map is generated for all words
in secrets, that is the whole list in wordle.txt. The function generates
a rank by summing up all frequencies of the letters in the string. For ex-
ample

rank (frequencies(secrets), "adobe") => 4.673604687018193
rank(frequencies(secrets), "gaffe") => 4.745205057045945
rank (frequencies(secrets), "fuzzy") => 4.898735738513722

Finally, implement a function ranked_evil that selects from the output
of evil the string(s) which are highest ranked in evilness.

ranked_evil(secrets, "abbey") => List(whizz)
ranked_evil(secrets, "afear") => List(buzzy)
ranked_evil(secrets, "zincy") => List(jugum)
ranked_evil(secrets, "zippy") => List(chuff)

This means if the user types in “abbey” then the most evil word to choose
as secret is “whizz” (according to our calculations). This word has a zero
iscore and the most obscure letters.

[1 Mark]



