
For the calculation below, I prefer to use the more “mathematical” notation for
regular expressions. Therefore let us first look at this notation and the corre‑
sponding Scala code.

“mathematical” notation
for regular expressions Scala code

0 ZERO
1 ONE
c CHAR(c)

∑ rs ALTs(rs)
∏ rs SEQs(rs)

r∗ STAR(r)

My own convention is that rs stands for a list of regular expressions. Also of
note is that these are all regular expressions in Main 3 and the template file
defines them as the (algebraic) datatype Rexp. A confusion might arise from
the fact that there is also some shorthand notation for some regular expressions,
namely

def ALT(r1: Rexp, r2: Rexp) = ALTs(List(r1, r2))
def SEQ(r1: Rexp, r2: Rexp) = SEQs(List(r1, r2))

Since these are functions, everything of the form ALT(r1, r2) will immedi‑
ately be translated into the regular expression ALTs(List(r1, r2)) (similarly
for SEQ). Maybe even more confusing is that Scala allows one to define exten‑
sions that provide an even shorter notation for ALT and SEQ, namely

r1 ∼ r2 def
= SEQ(r1, r2) def

= SEQs(List(r1, r2))

r1 | r2 def
= ALT(r1, r2) def

= ALTs(List(r1, r2))

The right hand sides are the fully expanded definitions. The reason for this
even shorter notation is that in the mathematical notation one often writes

r1 · r2
def
= ∏ [r1, r2]

r1 + r2
def
= ∑ [r1, r2]

The first one is for binary sequence regular expressions and the second for binary
alternative regular expressions. The regex in question in the shorthand notation
is (a + 1) · a, which is the same as

∏ [Σ [a, 1], a]

or in Scala code

(CHAR('a') | ONE) ∼ CHAR('a')

Using the mathematical notation, the definition of der is given by the rules:

9

(1) der c (0) def
= 0

(2) der c (1) def
= 0

(3) der c (d) def
= if c = d then 1 else 0

(4) der c (∑ [r1, .., rn])
def
= ∑ [der c r1, .., der c rn]

(5) der c (∏ [])
def
= 0

(6) der c (∏ r :: rs) def
= if nullable(r)

then (∏ (der c r) :: rs) + (der c (∏ rs))
else (∏ (der c r) :: rs)

(7) der c (r∗) def
= (der c r) · (r∗)

Let’s finally do the calculation for the derivative of the regular expression with
respect to the letter a (in red is in each line which regular expression is ana‑
lysed):

der(a, (a + 1) · a) by (6) and since a + 1 is nullable
def
= (der(a, a + 1) · a) + der(a, ∏ [a]) by (4)
def
= ((der(a, a) + der(a, 1)) · a) + der(a, ∏ [a]) by (3)
def
= ((1+ der(a, 1)) · a) + der(a, ∏ [a]) by (2)
def
= ((1+ 0) · a) + der(a, ∏ [a]) by (6) and a not being nullable
def
= ((1+ 0) · a) + ∏ [der(a, a)] by (3)
def
= ((1+ 0) · a) + ∏ [1]

Translating this result back into Scala code gives you

ALT((ONE | ZERO) ∼ CHAR('a') , SEQs(List(ONE)))

10

