
Main Part 3 (Scala, 6 Marks)
This part is about a regular expression matcher described by Brzozowski in
1964. The background is that “out‑of‑the‑box” regular expression matching in
mainstream languages like Java, JavaScript and Python can sometimes be ex‑
cruciatingly slow. You are supposed to implement a regular expressionmatcher
that is much, much faster.

Important

• Make sure the files you submit can be processed by just calling
scala <<filename.scala>> on the commandline.1 Use the template files
provided and do not make any changes to arguments of functions or to
any types. You are free to implement any auxiliary function you might
need.

• Do not leave any test cases running in your code because this might
slow down your program! Comment out test cases before submission,
otherwise you might hit a time‑out.

• Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot create new Arrays or ListBuffers,
for example.

• Do not use return in your code! It has a different meaning in Scala than
in Java. It changes the meaning of your program, and you should never
use it.

• Do not use var! This declares a mutable variable. Only use val!

• Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
30 seconds on my laptop.

Disclaimer

It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

1All major OSes, including Windows, have a commandline. So there is no good reason to not
download Scala, install it and run it on your own computer. Just do it!

1

Reference Implementation
This Scala assignment comes with a reference implementation in form of a jar‑
file. This allows you to run any test cases on your own computer. For example
you can call Scala on the command line with the option ‐cp re.jar and then
query any function from the re.scala template file. As usual you have to prefix
the calls with M3 or import this object. Since some tasks are time sensitive, you
can check the reference implementation as follows: if you want to know, for
example, how long it takes to match strings of a’s using the regular expression
(a∗)∗ · b you can query as follows:

$ scala ‐cp re.jar
scala> import M3._
scala> for (i <‐ 0 to 5000000 by 500000) {

| println(f"$i: ${time_needed(2, matcher(EVIL, "a" * i))}%.5f secs.")
| }

0: 0.00002 secs.
500000: 0.10608 secs.
1000000: 0.22286 secs.
1500000: 0.35982 secs.
2000000: 0.45828 secs.
2500000: 0.59558 secs.
3000000: 0.73191 secs.
3500000: 0.83499 secs.
4000000: 0.99149 secs.
4500000: 1.15395 secs.
5000000: 1.29659 secs.

Preliminaries
The task is to implement a regular expression matcher that is based on deriva‑
tives of regular expressions. Most of the functions are defined by recursion over
regular expressions and can be elegantly implemented using Scala’s pattern‑
matching. The implementation should deal with the following regular expres‑
sions, which have been predefined in the file re.scala:

r ::= 0 cannot match anything
| 1 can only match the empty string
| c can match a single character (in this case c)
| r1 + r2 can match a string either with r1 or with r2
| r1 · r2 can match the first part of a string with r1 and

then the second part with r2
| r∗ can match a string with zero or more copies of r

Why? Regular expressions are one of the simplest ways to match patterns in
text, and are endlessly useful for searching, editing and analysing data in all
sorts of places (for example analysing network traffic in order to detect secu‑

2

rity breaches). However, you need to be fast, otherwise you will stumble over
problems such as recently reported at

• https://blog.cloudflare.com/details‐of‐the‐cloudflare‐outage‐on‐july‐2‐2019

• https://stackstatus.net/post/147710624694/outage‐postmortem‐july‐20‐2016

• https://vimeo.com/112065252

• https://davidvgalbraith.com/how‐i‐fixed‐atom

Tasks (file re.scala)

The file re.scala has already a definition for regular expressions and also de‑
fines some handy shorthand notation for regular expressions. The notation in
this document matches up with the code in the file as follows:

code: shorthand:
0 7→ ZERO
1 7→ ONE
c 7→ CHAR(c)

∑ rs 7→ ALTs(rs)
r1 + r2 7→ ALT(r1, r2) r1 | r2

r1 · r2 7→ SEQ(r1, r2) r1 ∼ r2
r∗ 7→ STAR(r) r.%

The alternative regular expressions comes in two versions: one is binary (+ /
ALT) and the other is n‑ary (∑ / ALTs). The latter takes a list of regular expres‑
sions as arguments. In what follows we shall use rs to stand for lists of reg‑
ular expressions. The binary alternative can be seen as an abbreviation, that
is r1 + r2

def
= ∑ [r1, r2]. As a result we can ignore the binary version and only

implement the n‑ary alternative.

(1) Implement a function, called nullable, by recursion over regular expres‑
sions. This function tests whether a regular expression can match the
empty string. This means given a regular expression it either returns true
or false. The function nullable is defined as follows:

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(∑ rs) def
= ∃r ∈ rs. nullable(r)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

[0.5 Marks]

3

https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://vimeo.com/112065252
https://davidvgalbraith.com/how-i-fixed-atom

(2) Implement a function, called der, by recursion over regular expressions.
It takes a character and a regular expression as arguments and calculates
the derivative of a regular expression according to the rules:

der c (0) def
= 0

der c (1) def
= 0

der c (d) def
= if c = d then 1 else 0

der c (∑ [r1, .., rn])
def
= ∑ [der c r1, .., der c rn]

der c (r1 · r2)
def
= if nullable(r1)

then ((der c r1) · r2) + (der c r2)
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

For example given the regular expression r = (a · b) · c, the derivatives
w.r.t. the characters a, b and c are

der a r = (1 · b) · c (= r′)
der b r = (0 · b) · c
der c r = (0 · b) · c

Let r′ stand for the first derivative, then taking the derivatives of r′w.r.t. the
characters a, b and c gives

der a r′ = ((0 · b) + 0) · c
der b r′ = ((0 · b) + 1) · c (= r′′)
der c r′ = ((0 · b) + 0) · c

One more example: Let r′′ stand for the second derivative above, then
taking the derivatives of r′′ w.r.t. the characters a, b and c gives

der a r′′ = ((0 · b) + 0) · c + 0
der b r′′ = ((0 · b) + 0) · c + 0
der c r′′ = ((0 · b) + 0) · c + 1 (is nullable)

Note, the last derivative can match the empty string, that is it is nullable.
[1 Mark]

(3) We next want to simplify regular expressions: essentially we want to re‑
move 0 in regular expressions like r + 0 and 0+ r. However, our n‑ary
alternative takes a list of regular expressions as argument, we therefore
need a more general “flatten” function, called flts. This function should
analyse a list of regular expressions, say rs, as follows:

4

1) rs = []
def
= [] (empty list)

2) rs = 0 :: rest def
= flatten rest

3) rs = (∑ rs1) :: rest def
= rs1 ::: flatten rest

4) rs = r :: rest def
= r :: flatten rest (otherwise)

The first clause just states that empty lists cannot be further flattened. The
second removes all 0s from the list. The third is when the first regular
expression is an ALTs, then the content of this alternative should be spilled
out and appended with the flattened rest of the list. The last case is for
all other cases where the head of the list is not 0 and not an ALTs, then we
just keep the head of the list and flatten the rest. [1 Mark]

(4) Implement the function simp, which recursively traverses a regular ex‑
pression, and on the way up simplifies every regular expression on the
left (see below) to the regular expression on the right, except it does not
simplify inside ∗‑regular expressions.

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r
1 · r 7→ r
∑ [r1, .., rn] 7→ ∑ ((flts + distinct)[simp(r1), .., simp(rn)])

The last case is as follows: first apply simp to all regular expressions
r1, .., rn; then flatten the resulting list using flts; finally remove all dupli‑
cates in this list (this can be done in Scala using the function _.distinct).
For example the regular expression

(r1 + 0) · 1+ ((1+ r2) + r3) · (r4 · 0)

simplifies to just r1. Hint: Regular expressions can be seen as trees and
there are several methods for traversing trees. One of them corresponds
to the inside‑out traversal, which is also sometimes called post‑order tra‑
versal: you traverse inside the tree and on the way up you apply sim‑
plification rules. Another Hint: Remember numerical expressions from
school times—there you had expressions like u + . . . + (1 · x)− . . . (z +
(y · 0)) . . . and simplification rules that looked very similar to rules above.
Youwould simplify such numerical expressions by replacing for example
the y · 0 by 0, or 1 · x by x, and then look whether more rules are appli‑
cable. If you regard regular expressions as trees and if you organise the
simplification in an inside‑out fashion, it is always clear which simplifi‑
cation should be applied next. [1 Mark]

(5) Implement two functions: The first, called ders, takes a list of characters
and a regular expression as arguments, and builds the derivativew.r.t. the
list as follows:

5

ders (Nil) r def
= r

ders (c :: cs) r def
= ders cs (simp(der c r))

Note that this function is different from der, which only takes a single
character.
The second function, called matcher, takes a string and a regular expres‑
sion as arguments. It builds first the derivatives according to ders and after
that tests whether the resulting derivative regular expression can match
the empty string (using nullable). For example the matcher will produce
true for the regular expression (a · b) · c and the string abc, but false if you
give it the string ab. [1 Mark]

(6) Implement a function, called size, by recursion over regular expressions.
If a regular expression is seen as a tree, then size should return the number
of nodes in such a tree. Therefore this function is defined as follows:

size(0) def
= 1

size(1) def
= 1

size(c) def
= 1

size(∑ [r1, .., rn]
def
= 1 + size(r1) + ... + size(rn)

size(r1 · r2)
def
= 1 + size(r1) + size(r2)

size(r∗) def
= 1 + size(r)

You can use size in order to test how much the “evil” regular expression
(a∗)∗ · b grows when taking successive derivatives according the letter a
without simplification and then compare it to taking the derivative, but
simplify the result. The sizes are given in re.scala. [0.5 Marks]

(7) You do not have to implement anything specific under this task. The pur‑
pose here is that you will be marked for some “power” test cases. For
example can your matcher decide within 30 seconds whether the regu‑
lar expression (a∗)∗ · b matches strings of the form aaa . . . aaaa, for say 1
Million a’s. And does simplification simplify the regular expression

SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE)

correctly to just ONE, where SEQ is nested 50 or more times?
[1 Mark]

Background
Although easily implementable in Scala (okmaybe the simp functions and ALTs
needs a bit more thinking), the idea behind the derivative functionmight not so

6

easy to be seen. To understand its purpose better, assume a regular expression
r can match strings of the form c :: cs (that means strings which start with a
character c and have some rest, or tail, cs). If you take the derivative of r with
respect to the character c, then you obtain a regular expression that can match
all the strings cs. In other words, the regular expression der c r can match the
same strings c :: cs that can be matched by r, except that the c is chopped off.

Assume now r canmatch the string abc. If you take the derivative according
to a then you obtain a regular expression that can match bc (it is abc where
the a has been chopped off). If you now build the derivative der b (der a r)
you obtain a regular expression that can match the string c (it is bc where b
is chopped off). If you finally build the derivative of this according c, that is
der c (der b (der a r)), you obtain a regular expression that can match the
empty string. You can test whether this is indeed the case using the function
nullable, which is what your matcher is doing.

The purpose of the simp function is to keep the regular expressions small.
Normally the derivative function makes the regular expression bigger (see the
SEQ case and the example in (2)) and the algorithmwould be slower and slower
over time. The simp function counters this increase in size and the result is
that the algorithm is fast throughout. By the way, this algorithm is by Janusz
Brzozowski who came upwith the idea of derivatives in 1964 in his PhD thesis.

https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)

If you want to see how badly the regular expression matchers do in Java2,
JavaScript and Python with the “evil” regular expression (a∗)∗ · b, then have a
look at the graphs below (you can try it out for yourself: have a look at the files
catastrophic9.java, catastrophic.js, catastrophic.py etc onKEATS). Com‑
pare this with the matcher you have implemented. How long can a string of a’s
be in your matcher and still stay within the 30 seconds time limit? It should be
muuuch better than your off‑the‑shelf matcher in your bog‑standard language.

Graph: (a∗)∗ · b and strings a . . . a︸ ︷︷ ︸
n

5 10 15 20 25 30
0
5

10
15
20
25
30
35
40

n

tim
e
in

se
cs

Python
Java 8
JavaScript
Swift
Dart

20,000 40,000 60,000
0
5

10
15
20
25
30
35
40

n

tim
e
in

se
cs

Java 9

2Version 8 and below; Version 9 and above does not seem to be as catastrophic, but still much
worse than the regular expression matcher based on derivatives.

7

https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)

