Replacement Coursework 1 (Roman Numerals)

This coursework is worth 10%. It is about translating roman numerals into
integers and also about validating roman numerals. The coursework is due on
2 February at 5pm. Make sure the files you submit can be processed by just
calling scala <<filename.scala>>.

Important: Do not use any mutable data structures in your submission! They
are not needed. This excludes the use of ListBuffers, for example. Do not use
return in your code! It has a different meaning in Scala, than in Java. Do not
use var! This declares a mutable variable. Make sure the functions you submit
are defined on the “top-level” of Scala, not inside a class or object. Also note
that the running time will be restricted to a maximum of 360 seconds.

Disclaimer

It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Part 1 (Translation)

Roman numerals are strings consisting of the letters I, V, X, L, C, D, and M.
Such strings should be transformed into an internal representation using the
datatypes RomanDigit and RomanNumeral, and then from this internal repre-
sentation converted into an Integer.

(1) First write a polymorphic function that recursively transforms a list of
options into an option of a list. For example, if you have the lists on the
left, they should be transformed into the option on the right:

List(Some(1), Some(2), Some(3)) = Some(List(1, 2, 3))
List(Some(1), None, Some(3)) = None
List() = Some(List())

This means the function should produce None as soon as a None is inside
the list. Otherwise it produces a list of all Somes. In case the list is empty,
it produces Some of the empty list. [1 Mark]

(2) Write a function first a function that converts a character I, V, X, L, C, D,
or M into an option of a RomanDigit. If it is one of the roman digits, it
should produce Some; otherwise None.

Next write a function that converts a string into a RomanNumeral. Again,
this function should return an Option: If the string consists of I, V, X, L,



C, D, and M only, then it produces Some; otherwise if there is any other
character in the string, it should produce None. The empty string is just
the empty RomanNumeral, that is empty list of RomanDigit’s. You should
use the function under Task (1) to produce the result. [2 Marks]

(3) Write a recursive function RomanNumral2Int that converts a RomanNu-
meral into an integer. You can assume the generated integer will be be-
tween 0 and 3999. The argument of the function is a list of roman digits. It
should look how this list starts and then calculate what the corresponding
integer is for this “start” and add it with the integer for the rest of the list.
That means if the argument is of the form shown on the left-hand side, it
should do the calculation on the right-hand side.

M:r = 1000 + roman numeral of rest r
C:M:r = 900+ roman numeral of rest r
D:r = 500 + roman numeral of rest r
C:D:r = 400+ roman numeral of rest r
Cuor = 100 4 roman numeral of rest r
X:C:uzr = 90+ roman numeral of rest r
L:r = 50 + roman numeral of rest r
X:L:r = 40+ roman numeral of rest r
X:ur = 10 + roman numeral of rest r
I:X:ur = 9+ roman numeral of rest r
Vauor = 5+ roman numeral of rest r
I:Vur = 4 4 roman numeral of rest r
Iar = 1+ roman numeral of rest r
The empty list will be converted into integer 0. [1 Mark]

(4) Write a function that takes a string and if possible converts it into the
internal representation. If successful, then calculate the integer (an option
of an integer) according to the function in (3). If this is not possible, then
return None. [1 Mark]

(5) The file roman.txt contains a list of roman numerals. Read in these nu-
merals, convert them into integers and then add them all up. The function
for reading a file is

Source.fromFile("filename") ("ISO-8859-9")

Make sure you process the strings correctly by ignoring whitespaces where

neded.
[1 Mark]

Part 2 (Validation)



