
Coursework 8 (Scala, Regular Expressions
This coursework is worth 10%. It is about regular expressions, paĴern match-
ing and polymorphism. The first part is due on 30 November at 11pm; the
second, more advanced part, is due on 7 December at 11pm. You are asked to
implement a regular expression matcher. Make sure the files you submit can
be processed by just calling scala <<filename.scala>>.

Important: Do not use any mutable data structures in your submission! They
are not needed. This excludes the use of ListBuffers, for example. Do not
use return in your code! It has a different meaning in Scala, than in Java. Do
not use var! This declares a mutable variable. Make sure the functions you
submit are defined on the “top-level” of Scala, not inside a class or object. Also
note that the running time of each part will be restricted to a maximum of 360
seconds.

Disclaimer!!!!!!!!
It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Part 1 (6 Marks)
The task is to implement a regular expression matcher that is based on deriva-
tives of regular expressions. The implementation can deal with the following
regular expressions, which have been predefined in the file re.scala:

r ::= 0 cannot match anything
| 1 can only match the empty string
| c can match a character (in this case c)
| r1 + r2 can match a string either with r1 or with r2
| r1 · r2 can match the first part of a string with r1 and

then the second part with r2
| r∗ can match zero or more times r

Why? Knowing how to match regular expressions and strings fast will let you
solve a lot of problems that vex other humans. Regular expressions are one
of the fastest and simplest ways to match paĴerns in text, and are endlessly
useful for searching, editing and analysing text in all sorts of places. However,
you need to be fast, otherwise you will stumble over problems such as recently
reported at

• http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016

• https://vimeo.com/112065252

• http://davidvgalbraith.com/how-i-fixed-atom/

1

http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://vimeo.com/112065252
http://davidvgalbraith.com/how-i-fixed-atom/

Tasks (file re.scala)

(1a) Implement a function, called nullable, by recursion over regular expres-
sions. This function tests whether a regular expression can match the
empty string.

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

[1 Mark]

(1b) Implement a function, called der, by recursion over regular expressions.
It takes a character and a regular expression as arguments and calculates
the derivative regular expression according to the rules:

der c (0) def
= 0

der c (1) def
= 0

der c (d) def
= if c = d then 1 else 0

der c (r1 + r2)
def
= (der c r1) + (der c r2)

der c (r1 · r2)
def
= if nullable(r1)

then ((der c r1) · r2) + (der c r2)
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

For example given the regular expression r = (a · b) · c, the derivatives
w.r.t. the characters a, b and c are

der a r = (1 · b) · c (= r′)
der b r = (0 · b) · c
der c r = (0 · b) · c

Let r′ stand for the first derivative, then taking the derivatives of r′w.r.t. the
characters a, b and c gives

der a r′ = ((0 · b) + 0) · c
der b r′ = ((0 · b) + 1) · c (= r′′)
der c r′ = ((0 · b) + 0) · c

2

One more example: Let r′′ stand for the second derivative above, then
taking the derivatives of r′′ w.r.t. the characters a, b and c gives

der a r′′ = ((0 · b) + 0) · c + 0
der b r′′ = ((0 · b) + 0) · c + 0
der c r′′ = ((0 · b) + 0) · c + 1

Note, the last derivative can match the empty string, that is it is nullable.
[1 Mark]

(1c) Implement the function simp, which recursively traverses a regular ex-
pression from the inside to the outside, and simplifies every sub-regular-
expression on the left (see below) to the regular expression on the right,
except it does not simplify inside ∗-regular expressions.

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r
1 · r 7→ r
r + 0 7→ r
0+ r 7→ r
r + r 7→ r

For example the regular expression

(r1 + 0) · 1+ ((1+ r2) + r3) · (r4 · 0)

simplifies to just r1. Hints: Regular expressions can be seen as trees and
there are several methods for traversing trees. One of them corresponds
to the inside-out traversal. Also remember numerical expressions from
school: there you had exprssions like u + . . . + (1 · x) ∗ . . . (z + (y · 0)) . . .
and simplification rules that lookedvery similar to rules above. Youwould
simplify such numerical expressions by replacing for example the y · 0 by
0, or 1 · x by x, and then look if more rules are applicable. If you organise
this simplification in an inside-out fashion, it is always clear which rule
should applied next.

[1 Mark]

(1d) Implement two functions: The first, called ders, takes a list of characters
and a regular expression as arguments, and builds the derivativew.r.t. the
list as follows:

ders (Nil) r def
= r

ders (c :: cs) r def
= ders cs (simp(der c r))

3

Note that this function is different from der, which only takes a single
character.
The second function, called matcher, takes a string and a regular expres-
sion as arguments. It builds first the derivatives according to ders and after
that tests whether the resulting derivative regular expression can match
the empty string (using nullable). For example the matcher will produce
true given the regular expression (a · b) · c and the string abc.

[1 Mark]

(1e) Implement the function replace r s1 s2: it searches (from the left to right) in
the string s1 all the non-empty substrings that match the regular expres-
sion r—these substrings are assumed to be the longest substringsmatched
by the regular expression and assumed to be non-overlapping. All these
substrings in s1 matched by r are replaced by s2. For example given the
regular expression

(a · a)∗ + (b · b)

the string s1 = aabbbaaaaaaabaaaaabbaaaabb and replacement the string
s2 = c yields the string

ccbcabcaccc

[2 Marks]

Part 2 (4 Marks)
You need to copy all the code from re.scala into re2.scala in order to com-
plete Part 2. Parts (2a) and (2b) give you another method and datapoints for
testing the der and simp functions from Part 1.

Tasks (file re2.scala)

(2a) Write a polymorphic function, called iterT, that is tail-recursive(!) and
takes an integer n, a function f and an x as arguments. This function
should iterate f n-times starting with the argument x, like

f (. . . (f︸ ︷︷ ︸
n-times

(x)))

More formally that means iterT behaves as follows:

iterT(n, f , x) def
=

{
x if n = 0
f (iterT(n − 1, f , x)) otherwise

4

Make sure you write a tail-recursive version of iterT. If you add the an-
notation @tailrec (see below) your code should not produce an error
message.

import scala.annotation.tailrec

@tailrec
def iterT[A](n: Int, f: A => A, x: A): A = ...

You can assume that iterT will only be called for positive integers 0 ≤ n.
Given the type variable A, the type of f is A => A and the type of x is A.
This means iterT can be used, for example, for functions from integers to
integers, or strings to strings, or regular expressions to regular expres-
sions.

[2 Marks]

(2b) Implement a function, called size, by recursion over regular expressions.
If a regular expression is seen as a tree, then size should return the number
of nodes in such a tree. Therefore this function is defined as follows:

size(0) def
= 1

size(1) def
= 1

size(c) def
= 1

size(r1 + r2)
def
= 1 + size(r1) + size(r2)

size(r1 · r2)
def
= 1 + size(r1) + size(r2)

size(r∗) def
= 1 + size(r)

You can use size and iterT in order to test how much the ’evil’ regular
expression (a∗)∗ · b grows when taking successive derivatives according
the leĴer a and then compare it to taking the derivative, but simlifying the
derivative after each step. For example, the calls

size(iterT(20, (r: Rexp) => der('a', r), EVIL))
size(iterT(20, (r: Rexp) => simp(der('a', r)), EVIL))

produce without simplification a regular expression of size of 7340068
after 20 iterations, while the one with simplification gives just 8.

[1 Mark]

(2c) Write a polymorphic function, called fixpT, that takes a function f and
an x as arguments. The purpose of fixpT is to calculate a fixpoint of the
function f starting from the argument x. A fixpoint, say y, is when f (y) =
y holds. That means fixpT behaves as follows:

5

fixpT(f , x) def
=

{
x if f (x) = x
fixpT(f , f (x)) otherwise

Make sure you calculate in the code of fixpT the result of f (x) only once.
Given the type variable A in fixpT, the type of f is A => A and the type of
x is A. The file re2.scala gives two example function where in one the
fixpoint is 1 and in the other it is the string a.

[1 Mark]

BackgroundAlthough easily implementable in Scala, the idea behind the deriva-
tive function might not so easy to be seen. To understand its purpose beĴer,
assume a regular expression r can match strings of the form c :: cs (that means
strings which start with a character c and have some rest, or tail, cs). If you
now take the derivative of r with respect to the character c, then you obtain a
regular expressions that canmatch all the strings cs. In other words, the regular
expression der c r can match the same strings c :: cs that can be matched by r,
except that the c is chopped off.

Assume now r canmatch the string abc. If you take the derivative according
to a then you obtain a regular expression that can match bc (it is abc where
the a has been chopped off). If you now build the derivative der b (der a r))
you obtain a regular expression that can match the string c (it is bc where b
is chopped off). If you finally build the derivative of this according c, that is
der c (der b (der a r))), you obtain a regular expression that can match the
empty string. You can test this using the function nullable, which is what your
matcher is doing.

The purpose of the simp function is to keep the regular expression small.
Normally the derivative function makes the regular expression bigger (see the
SEQ case and the example in (2b)) and the algorithm would be slower and
slower over time. The simp function counters this increase in size and the result
is that the algorithm is fast throughout. By the way, this algorithm is by Janusz
Brzozowski who came upwith the idea of derivatives in 1964 in his PhD thesis.

https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)

6

https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)

