
Coursework 8 (Scala, Regular Expressions
This coursework is worth 10%. It is about regular expressions and paĴern
matching. The first part is due on 30 November at 11pm; the second, more
advanced part, is due on 7 December at 11pm. The second part is not yet
included. For the first part you are asked to implement a regular expression
matcher. Make sure the files you submit can be processed by just calling scala
<<filename.scala>>.

Important: Do not use any mutable data structures in your submission! They
are not needed. This excluded the use of ListBuffers, for example. Do not use
return in your code! It has a different meaning in Scala, than in Java. Do not
use var! This declares a mutable variable. Make sure the functions you submit
are defined on the “top-level” of Scala, not inside a class or object.

Disclaimer!!!!!!!!
It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Part 1 (6 Marks)
The task is to implement a regular expression matcher that is based on deriva-
tives of regular expressions. The implementation can deal with the following
regular expressions, which have been predefined in the file re.scala:

r ::= 0 cannot match anything
| 1 can only match the empty string
| c can match a character (in this case c)
| r1 + r2 can match a string either with r1 or with r2
| r1 · r2 can match the first part of a string with r1 and

then the second part with r2
| r∗ can match zero or more times r

Why? Knowing how to match regular expressions and strings fast will let you
solve a lot of problems that vex other humans. Regular expressions are one
of the fastest and simplest ways to match paĴerns in text, and are endlessly
useful for searching, editing and analysing text in all sorts of places. However,
you need to be fast, otherwise you will stumble over problems such as recently
reported at

• http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
• https://vimeo.com/112065252
• http://davidvgalbraith.com/how-i-fixed-atom/

1

http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://vimeo.com/112065252
http://davidvgalbraith.com/how-i-fixed-atom/


Tasks (file re.scala)
(1a) Implement a function, called nullable, by recursion over regular expres-

sions. This function tests whether a regular expression can match the
empty string.

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

[1 Mark]

(1b) Implement a function, called der, by recursion over regular expressions.
It takes a character and a regular expression as arguments and calculates
the derivative regular expression according to the rules:

der c (0) def
= 0

der c (1) def
= 0

der c (d) def
= if c = d then 1 else 0

der c (r1 + r2)
def
= (der c r1) + (der c r2)

der c (r1 · r2)
def
= if nullable(r1)

then ((der c r1) · r2) + (der c r2)
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

For example given the regular expression r = (a · b) · c, the derivatives
w.r.t. the characters a, b and c are

der a r = (1 · b) · c (= r′)
der b r = (0 · b) · c
der c r = (0 · b) · c

Let r′ stand for the first derivative, then taking the derivatives of r′w.r.t. the
characters a, b and c gives

der a r′ = ((0 · b) + 0) · c
der b r′ = ((0 · b) + 1) · c (= r′′)
der c r′ = ((0 · b) + 0) · c

2



One more example: Let r′′ stand for the second derivative above, then
taking the derivatives of r′′ w.r.t. the characters a, b and c gives

der a r′′ = ((0 · b) + 0) · c + 0
der b r′′ = ((0 · b) + 0) · c + 0
der c r′′ = ((0 · b) + 0) · c + 1

Note, the last derivative can match the empty string, that is it is nullable.
[1 Mark]

(1c) Implement the function simp, which recursively traverses a regular ex-
pression from the inside to the outside, and simplifies every sub-regular-
expression on the left (see below) to the regular expression on the right,
except it does not simplify inside ∗-regular expressions.

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r
1 · r 7→ r
r + 0 7→ r
0+ r 7→ r
r + r 7→ r

For example the regular expression

(r1 + 0) · 1+ ((1+ r2) + r3) · (r4 · 0)

simplifies to just r1. [1 Mark]

(1d) Implement two functions: The first, called ders, takes a list of characters
and a regular expression as arguments, and builds the derivativew.r.t. the
list as follows:

ders (Nil) r def
= r

ders (c :: cs) r def
= ders cs (simp(der c r))

The second, called matcher, takes a string and a regular expression as ar-
guments. It builds first the derivatives according to ders and after that
tests whether the resulting derivative regular expression can match the
empty string (using nullable). For example the matcher will produce true
given the regular expression (a · b) · c and the string abc. [1 Mark]

(1e) Implement the function replace r s1 s2: it searches (from the left to right) in
the string s1 all the non-empty substrings that match the regular expres-
sion r—these substrings are assumed to be the longest substringsmatched
by the regular expression and assumed to be non-overlapping. All these

3



substrings in s1 matched by r are replaced by s2. For example given the
regular expression

(a · a)∗ + (b · b)

the string s1 = aabbbaaaaaaabaaaaabbaaaabb and replacement string s2 =
c yields the string

ccbcabcaccc

[2 Mark]

Part 2 (4 Marks)
Coming soon.

4


