Coursework 9 (Scala)

This coursework is worth 10%. It is about a regular expression matcher and
the shunting yard algorithm by Dijkstra. The first part is due on 6 December
at 11pm; the second, more advanced part, is due on 20 December at 11pm. In
the first part, you are asked to implement a regular expression matcher based
on derivatives of regular expressions. The background is that “out-of-the-box”
regular expression matching in mainstream languages like Java, JavaScript and
Python can sometimes be excruciatingly slow. You are supposed to implement
an regular expression matcher that is much, much faster. The advanced part is
about the shunting yard algorithm that transforms the usual infix notation of
arithmetic expressions into the postfix notation, which is for example used in
compilers.

Important

* Make sure the files you submit can be processed by just calling
scala <<filename.scala>>on the commandline.! Use the template files
provided and do not make any changes to arguments of functions or to
any types. You are free to implement any auxiliary function you might
need.

* Do not leave any test cases running in your code because this might
slow down your program! Comment out test cases before submission,
otherwise you might hit a time-out.

* Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot create new Arrays or ListBuffers,
for example.

* Do not use return in your code! It has a different meaning in Scala than
in Java.

* Do not use var! This declares a mutable variable. Only use val!

* Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
30 seconds on my laptop.
Disclaimer

It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

L All major OSes, including Windows, have a commandline. So there is no good reason to not
download Scala, install it and run it on your own computer. Just do it!

Reference Implementation

This Scala assignment comes with three reference implementations in form of
jar-files you can download from KEATS. This allows you to run any test cases
on your own computer. For example you can call Scala on the command line
with the option -cp re.jar and then query any function from the re.scala
template file. As usual you have to prefix the calls with CW9a, CW9b and CW9c.
Since some tasks are time sensitive, you can check the reference implementation
as follows: if you want to know, for example, how long it takes to match strings
of a’s using the regular expression (a*)* - b you can query as follows:

$ scala -cp re.jar
scala> import CW9a._
scala> for (i <- © to 5000000 by 500000) {

| println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a"

|}
0 0.00002 secs.

500000 0.10608 secs.

1000000 ©.22286 secs.
1500000 ©.35982 secs.
2000000 0.45828 secs.
2500000 ©.59558 secs.
3000000 ©.73191 secs.
3500000 0.83499 secs.
4000000 0.99149 secs.
4500000 1.15395 secs.
5000000 1.29659 secs.

Part 1 (6 Marks)

The task is to implement a regular expression matcher that is based on deriva-
tives of regular expressions. Most of the functions are defined by recursion over
regular expressions and can be elegantly implemented using Scala’s pattern-
matching. The implementation should deal with the following regular expres-
sions, which have been predefined in the file re.scala:

r 0 cannot match anything

1 can only match the empty string

c can match a single character (in this case c)

r1 + 1, can match a string either with r; or with 7

r1-rp can match the first part of a string with r; and
then the second part with r;

can match a string with zero or more copies of r

o
Why? Regular expressions are one of the simplest ways to match patterns in
text, and are endlessly useful for searching, editing and analysing data in all
sorts of places (for example analysing network traffic in order to detect secu-

* 1))) + "secs.")

rity breaches). However, you need to be fast, otherwise you will stumble over

problems such as recently reported at

e http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016

e https://vimeo.com/112065252

e http://davidvgalbraith.com/how-1i-fixed-atom/

Tasks (file re.scala)

The file re.scala has already a definition for regular expressions and also de-
fines some handy shorthand notation for regular expressions. The notation in
this document matches up with the code in the file as follows:

code: shorthand:
0 +— ZERO
1 — ONE
¢ +— CHAR(c)
r+r, +— ALT(rl, r2) ri | r2
r1-rp +— SEQ(rl, r2) rli ~ r2
r +— STAR(r) r.%

(1) Implement a function, called nullable, by recursion over regular expres-

sions. This function tests whether a regular expression can match the
empty string. This means given a regular expression it either returns true
or false. The function nullable is defined as follows:

def

nullable(0) =
nullable(1) et
nullable(c) o
nullable(ry + 17) et
nullable(ry - 17) &
nullable(r*) &t

false
true
false
nullable(r1) V nullable(r;)
nullable(r1) A nullable(r;)

true

[1 Mark]

(2) Implement a function, called der, by recursion over regular expressions.
It takes a character and a regular expression as arguments and calculates
the derivative of a xregular expression according to the rules:

http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://vimeo.com/112065252
http://davidvgalbraith.com/how-i-fixed-atom/

®)

der ¢ (0) = 0

der ¢ (1) L

der ¢ (d def ifc =d then 1else 0
der ¢ (1 +12) &of (der c r1) + (der ¢ rp)
der ¢ (r1-13) o if nullable(ry)

then ((der c r1) - rp) + (der c rp)
else (der cry) - 1o

der ¢ (1) = (dercr)-(r")

For example given the regular expression r = (a - b) - ¢, the derivatives
w.r.t. the characters a, b and ¢ are

derar = (1-b)-c (=7)
derbr = (0-D)-c
dercr = (0-b)-c

Let ' stand for the first derivative, then taking the derivatives of ¥’ w.r.t. the
characters g, b and c gives

derar’” = ((0-b)+0)-c
derbr = ((0-b)+1)-c (="
dercr’ = ((0-b)40)-c

One more example: Let 7’ stand for the second derivative above, then
taking the derivatives of r”” w.r.t. the characters 4, b and c gives

derar” = ((0-b)+0)-c+0
derbr” = ((0-b)+0)-c+0
dercr” = ((0-b)+0)-c+1 (isnullable)

Note, the last derivative can match the empty string, that is it is nullable.
[1 Mark]

Implement the function simp, which recursively traverses a regular ex-
pression, and on the way up simplifies every regular expression on the
left (see below) to the regular expression on the right, except it does not
simplify inside *-regular expressions.

- o
S =S o

0+r
r+r

1111111

(4)

©)

For example the regular expression
(r40)-1+((1+r)+7r3)-(r4-0)

simplifies to just r1. Hint: Regular expressions can be seen as trees and
there are several methods for traversing trees. One of them corresponds
to the inside-out traversal, which is also sometimes called post-order tra-
versal: you traverse inside the tree and on the way up you apply sim-
plification rules. Another Hint: Remember numerical expressions from
school times—there you had expressions like u 4+ ...+ (1-x) —...(z+
(y-0))...and simplification rules that looked very similar to rules above.
You would simplify such numerical expressions by replacing for example
they-0by 0, or 1 - x by x, and then look whether more rules are applica-
ble. If you organise the simplification in an inside-out fashion, it is always
clear which simplification should be applied next. [1 Mark]

Implement two functions: The first, called ders, takes a list of characters
and aregular expression as arguments, and builds the derivative w.r.t. the
list as follows:

ders (Nil) r = r

ders (c::cs) r L ders cs (simp(der cr))

Note that this function is different from der, which only takes a single
character.

The second function, called matcher, takes a string and a regular expres-
sion as arguments. Itbuilds first the derivatives according to ders and after
that tests whether the resulting derivative regular expression can match
the empty string (using nullable). For example the matcher will produce
true for the regular expression (a - b) - c and the string abc, but false if you
give it the string ab. [1 Mark]

Implement a function, called size, by recursion over regular expressions.
If aregular expression is seen as a tree, then size should return the number
of nodes in such a tree. Therefore this function is defined as follows:

def

size(0) 1

size(1) L

size(c) L

size(ry +17) L size(r1) + size(r2)
size(ry - 12) L size(r1) + size(r2)
size(r*) L= (S size(r)

You can use size in order to test how much the “evil” regular expression
(a*)* - b grows when taking successive derivatives according the letter a
without simplification and then compare it to taking the derivative, but
simplify the result. The sizes are given in re.scala. [1 Mark]

(6) You do not have to implement anything specific under this task. The pur-
pose here is that you will be marked for some “power” test cases. For
example can your matcher decide within 30 seconds whether the regu-
lar expression (a*)* - b matches strings of the form aaa .. .aaaa, for say 1
Million a’s. And does simplification simplify the regular expression

SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE)

correctly to just ONE, where SEQ is nested 50 or more times?
[1 Mark]

Background

Although easily implementable in Scala, the idea behind the derivative function
mightnot so easy to be seen. To understand its purpose better, assume a regular
expression * can match strings of the form c:: cs (that means strings which start
with a character ¢ and have some rest, or tail, cs). If you take the derivative of
r with respect to the character ¢, then you obtain a regular expression that can
match all the strings cs. In other words, the regular expression der c ¥ can match
the same strings c:: cs that can be matched by r, except that the c is chopped off.

Assume now r can match the string abc. If you take the derivative according
to a then you obtain a regular expression that can match bc (it is abc where
the a has been chopped off). If you now build the derivative der b (der a r)
you obtain a regular expression that can match the string c (it is bc where b
is chopped off). If you finally build the derivative of this according c, that is
der ¢ (der b (der a r)), you obtain a regular expression that can match the
empty string. You can test whether this is indeed the case using the function
nullable, which is what your matcher is doing.

The purpose of the simp function is to keep the regular expressions small.
Normally the derivative function makes the regular expression bigger (see the
SEQ case and the example in (2)) and the algorithm would be slower and slower
over time. The simp function counters this increase in size and the result is
that the algorithm is fast throughout. By the way, this algorithm is by Janusz
Brzozowski who came up with the idea of derivatives in 1964 in his PhD thesis.

https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)

If you want to see how badly the regular expression matchers do in Java?,
JavaScript and Python with the ‘evil’ regular expression (a*)* - b, then have

2Version 8 and below; Version 9 and above does not seem to be as catastrophic, but still much
worse than the regular expression matcher based on derivatives.

https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)

a look at the graphs below (you can try it out for yourself: have a look at the
file catastrophic9.java, catastrophic.js and catastrophic.py on KEATS).
Compare this with the matcher you have implemented. How long can the
string of a’s be in your matcher and still stay within the 30 seconds time limit?

Graph: (a*)* - b and strings a...a

n

35 {|—o—Java 8 35 +
g 30 || —o—JavaScript g 30 |
£ 2 £ 2] /
o 20| o 20| e
£15] E 15| Vs
10 | 10 | 3&/“
5 T 5 T J
0 0 M . ;
5 10 15 20 25 30 20,000 40,000 60,000
n n

Part 2 (4 Marks)

The Shunting Yard Algorithm has been developed by Edsger Dijkstra, an influ-
ential computer scientist who developed many well-known algorithms. This
algorithm transforms the usual infix notation of arithmetic expressions into the
postfix notation, sometimes also called reverse Polish notation.

Why on Earth do people use the postfix notation? It is much more conve-
nient to work with the usual infix notation for arithmetic expressions. Most
modern calculators (as opposed to the ones used 20 years ago) understand in-
fix notation. So why on Earth? ...Well, many computers under the hood, even
nowadays, use postfix notation extensively. For example if you give to the Java
compiler the expression 1+ ((2 * 3) 4 (4 — 3)), it will generate the Java Byte
code

ldc 1
ldc 2
ldc 3
imul
ldc 4
ldc 3
isub
iadd
iadd

where the command ldc loads a constant onto the stack, and imul, isub and
iadd are commands acting on the stack. Clearly this is the arithmetic expression
in postfix notation.

The shunting yard algorithm processes an input token list using an operator
stack and an output list. The input consists of numbers, operators (+, —, *,
/) and parentheses, and for the purpose of the assignment we assume the in-
put is always a well-formed expression in infix notation. The calculation in the
shunting yard algorithm uses information about the precedences of the opera-
tors (given in the template file). The algorithm processes the input token list as
follows:

¢ If there is a number as input token, then this token is transferred directly
to the output list. Then the rest of the input is processed.

o If there is an operator as input token, then you need to check what is
on top of the operator stack. If there are operators with a higher or equal
precedence, these operators are first popped off from the stack and moved
to the output list. Then the operator from the input is pushed onto the
stack and the rest of the input is processed.

¢ If the input is a left-parenthesis, you push it on to the stack and continue
processing the input.

If the input is a right-parenthesis, then you pop off all operators from
the stack to the output list until you reach the left-parenthesis. Then you
discharge the (and) from the input and stack, and continue processing
the input list.

If the input is empty, then you move all remaining operators from the
stack to the output list.

Tasks (file postfix.scala)

@)

8)

Implement the shunting yard algorithm described above. The function,
called syard, takes a list of tokens as first argument. The second and
third arguments are the stack and output list represented as Scala lists.
The most convenient way to implement this algorithm is to analyse what
the input list, stack and output list look like in each step using pattern-
matching. The algorithm transforms for example the input

LiSt(3: +, 4: *J (: 2) o 1)))

into the postfix output

List(3, 4, 2, 1, -, *, +)

You can assume the input list is always a list representing a well-formed
infix arithmetic expression. [1 Mark]

Implement a compute function that takes a postfix expression as argu-
ment and evaluates it generating an integer as result. It uses a stack to
evaluate the postfix expression. The operators +, —, * are as usual; / is
division on integers, for example 7/3 = 2. [1 Mark]

Task (file postfix2.scala)

)

Extend the code in (7) and (8) to include the power operator. This requires
proper account of associativity of the operators. The power operator is
right-associative, whereas the other operators are left-associative. Left-
associative operators are popped off if the precedence is bigger or equal,
while right-associative operators are only popped off if the precedence is
bigger. The compute function in this task should use Longs, rather than
Ints. [2 Marks]

