
Resit Exam
The Scala part of the exam is worth 30%. It is about ‘jumps’ within lists.

Important

• Make sure the files you submit can be processed by just calling
scala <<filename.scala>> on the commandline. Use the template file
provided and do not make any changes to arguments of functions or to
any types. You are free to implement any auxiliary function you might
need.

• Do not use any mutable data structures in your submission! They are not
needed. This means you cannot create new Arrays or ListBuffers, for
example.

• Do not use return in your code! It has a different meaning in Scala than
in Java.

• Do not use var! This declares a mutable variable. Only use val!

• Do not use any parallel collections! No .par therefore!

Disclaimer

It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

During the exam you may not communicate with other people: no email, in-
stant messaging, discussion forums, use of mobile phones, etc.

Task
Suppose you are given a list of numbers. Each number indicates how many
steps can be taken forward from this element. For example in the list

3 4 2 0 1 End

1

the first 3 indicates that you can step to the next three elements, that is 4, 2, and
0. The 2 in the middle indicates that you can step to elements 0 and 1. From the
final 1 you can step to the End of the list. You can also do this from element 4,
since the end of this list is reachable from there. A 0 always indicates that you
cannot step any further from this element.
The problem is to calculate a sequence of steps to reach the end of the list by tak-
ing only steps indicated by the integers. For the list above, possible sequences
of steps are 3 - 2 - 1 - End, but also 3 - 4 - End. This is a recursive problem that
can be thought of as a tree where the root is a list and the children are all the
lists that are reachable by a single step. For example for the list above this gives
a tree like

[3,4,2,0,1]

[0,1]

[2,0,1]

[1] End

[0,1]

[4,2,0,1]…

Tasks

(1) Write a function, called steps, that calculates the children of a list. This
function takes an integer as one argument indicating howmany children
should be returned. The other argument is a list of integers. In case of 3
and the list [4,2,0,1], it should produce the list

[[4,2,0,1], [2,0,1], [0,1]]

Be careful to account properly for the end of the list. For example for the
integer 4 and the list [2,0,1], the function should return the list

[[2,0,1], [0,1], [1]]

[Marks: 8%]

(2) Write a function search that tests whether there is a way to reach the end
of a list. This is not always the case, for example for the list

[3,5,1,0,0,0,0,0,0,0,0,1]

there is no sequence of steps that can bring you to the end of the list. If
there is a way, search should return true, otherwise false. In case of the
empty list, search should return true since the end of the list is already
reached.

[Marks: 10%]

2

(3) Write a function jumps that calculates the shortest sequence of steps needed
to reach the end of a list. One way to calculate this is to generate all se-
quences to reach the end of a list and then select one that has the shortest
length. This function needs to return a value of type Option[List[Int]]
because for some lists there does not exists a sequence at all. If there ex-
ists such a sequence, jumps should return Some(…); otherwise None. In the
special case of the empty list, jumps should return None

[Marks: 12%]

Hints: useful list functions: .minBy(..) searches for the first element in a
list that is the minimum according to a given measure; .length calculates the
length of a list; .exists(..) returns true when an element in a list satisfies a
given predicate, otherwise returns false; .map(..) applies a given function to
each element in a list; .flatten turns a list of lists into just a list; _::_ puts an
element on the head of the list.

3

