For the calculation below, I prefer to use the more “mathematical” notation for
regular expressions. Therefore let us first look at this notation and the corre-
sponding Scala code.

“mathematical” notation

for regular expressions Scala code
0 ZERO
1 ONE
c CHAR(c)
Y rs ALTs(rs)
IIrs SEQs(rs)
r STAR(r)

My own convention is that rs stands for a list of regular expressions. Also of
note is that these are all regular expressions in Main 3 and the template file
defines them as the (algebraic) datatype Rexp. A confusion might arise from
the fact that there is also some shorthand notation for some regular expressions,
namely

def ALT(rl: Rexp, r2: Rexp)
def SEQ(rl: Rexp, r2: Rexp)

ALTs(List(r1, r2))
SEQs(List(ri, r2))

Since these are functions, everything of the form ALT(r1, r2) will immedi-
ately be translated into the regular expression ALTs(List(r1, r2)) (similarly
for SEQ). Maybe even more confusing is that Scala allows one to define exten-
sions that provide an even shorter notation for ALT and SEQ, namely

ri~r2 & SEQ(rl1, r2) def SEQs(List(r1, r2))
rllr2 2 ALT(r1, r2) ¥ ALTS(List(rl, r2))

joy
N

The right hand sides are the fully expanded definitions. The reason for this
even shorter notation is that in the mathematical notation one often writes

def
r-rn = I,

def
r+r = Y[,

The first one is for binary sequence regular expressions and the second for binary
alternative regular expressions. The regex in question in the shorthand notation
is (a + 1) - a, which is the same as

[1Z[1]4]

or in Scala code

(CHAR('a') | ONE) ~ CHAR('a')

Using the mathematical notation, the definition of der is given by the rules:

N
~

~ N N NS~
Q1 B~ W
= D =

[©))
~

(7)

der ¢ (0) =
der ¢ (1) =
der ¢ (d) &
der ¢ (X [r1, .., tn]) &of
der ¢ (T [) <
der ¢ (T] r=rs) =
der ¢ (r*) o

0

0

ifc =d then 1else 0
Y. [der cry, .. der c 1y)
0

if nullable(r)
then (T1 (der c r)::rs) + (der ¢ (T]rs))
else (TT (der c r)::rs)

(dercr)-(r*)

Let’s finally do the calculation for the derivative of the regular expression with
respect to the letter a (in red is in each line which regular expression is ana-

lysed):

der(a,(a+1)-a)

(
((
def ((
((
((
((

—_— — T

]

by (6) and since a + 1 is nullable

der(a,a +1)-a) +der(a, [1]a]) by (4)
der(a,a) +der(a,1)) - a
1+der(a,1))-a)+ der
1+40)-a) +der(a,]]|a
1+40)-a) +I][der(a,a
14+0)-a)+T1[1]

+der(a, [T1]a]) by (3)
a, [T[a]) by (2)

by (6) and a not being nullable
by (3)

Translating this result back into Scala code gives you

ALT((ONE | ZERO) ~ CHAR('a') , SEQs(List(ONE)))

10

