
PEP Scala (2)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)

Slides & Code: KEATS

Office Hours: Thursdays 12:00 – 14:00
Additionally: (for Scala) Tuesdays 10:45 – 11:45

PEP (Scala) 02, King’s College London – p. 1/29

Scala 2.13.1
$ scala

Welcome to Scala 2.13.1 (Java HotSpot(TM)
64‐Bit Server VM, Java 9). Type in expressions
for evaluation. Or try :help.

scala>

With older versions you will get
strange results with my reference
implementation.

PEP (Scala) 02, King’s College London – p. 2/29

Reference
Implementation

Keep your implementation and my
reference implementation separate.

$ scala ‐cp collatz.jar

scala> CW6a.collatz(6)
res0: Long = 8

scala> import CW6a._
scala> collatz(9)
res1: Long = 19

PEP (Scala) 02, King’s College London – p. 3/29

Preliminary Part 7

overlap(d1, d2) =
d1 · d2

max(d2
1, d2

2)

where d21 means d1 · d1
and so on

PEP (Scala) 02, King’s College London – p. 4/29

Discussion Forum

“Since we can’t use vars I was
wondering if we could use a
stack?”

My collatz and collatz_max
functions are 4 loc each.

PEP (Scala) 02, King’s College London – p. 5/29

Email: Hate ’val’
Subject: Hate ’val’ 01:00 AM

Hello Mr Urban,

I just wanted to ask, how are we suppose to work with
the completely useless val, that can’t be changed ever?
Why is this rule active at all? I’ve spent 4 hours not
thinking on the coursework, but how to bypass this
annoying rule. What’s the whole point of all these
coursework, when we can’t use everything Scala gives
us?!?

Regards.
«deleted»

PEP (Scala) 02, King’s College London – p. 6/29

Subject: Re: Hate ’val’ 01:02 AM

«my usual rant about fp…
concurrency bla bla… better programs yada»

PS: What are you trying to do where you desperately
want to use var?

PEP (Scala) 02, King’s College London – p. 7/29

PEP (Scala) 02, King’s College London – p. 8/29

Subject: Re: Re: Hate ’val’ 01:04 AM

Right now my is_legal function works fine:

def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {
var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 < 0 || x._2 < 0) {
else { var breakLoop = false

if(path == Nil) { boolReturn = true }
else { for(i <‐ 0 until path.length) {

if(breakLoop == false) {
if(path(i) == x) {

boolReturn = true
breakLoop = true

}
else { boolReturn = false }

} else breakLoop
}

}
boolReturn

}

…but I can’t make it work with
boolReturn being val. What approach
would you recommend in this case,
and is using var in this case justified?

PEP (Scala) 02, King’s College London – p. 8/29

Subject: Re: Re: Hate ’val’ 01:04 AM

Right now my is_legal function works fine:

def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {
var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 < 0 || x._2 < 0) {
else { var breakLoop = false

if(path == Nil) { boolReturn = true }
else { for(i <‐ 0 until path.length) {

if(breakLoop == false) {
if(path(i) == x) {

boolReturn = true
breakLoop = true

}
else { boolReturn = false }

} else breakLoop
}

}
boolReturn

}

…but I can’t make it work with
boolReturn being val. What approach
would you recommend in this case,
and is using var in this case justified?

Me:

PEP (Scala) 02, King’s College London – p. 9/29

Subject: Re: Re: Re: Hate ’val’ 01:06 AM

OK. So you want to make sure that the x-position is not outside the
board....and furthermore you want to make sure that the x-position is
not yet in the path list. How about something like

def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
...<<some board conditions>>... && !path.contains(x)

Does not even contain a val.

(This is all on one line)

PEP (Scala) 02, King’s College London – p. 10/29

Subject: Re: Re: Re: Re: Hate ’val’ 11:02 AM

THANK YOU! You made me change my coding
perspective. Because of you, I figured out the next
one…

PEP (Scala) 02, King’s College London – p. 10/29

Subject: Re: Re: Re: Re: Hate ’val’ 11:02 AM

THANK YOU! You made me change my coding
perspective. Because of you, I figured out the next
one…

Me:

Assignments
Don’t change any names or types in
the templates!

Avoid at all costs:
var
return
ListBuffer
mutable
.par

I cannot think of a good reason to
use stacks.

PEP (Scala) 02, King’s College London – p. 11/29

For-Comprehensions
Again

for (n <‐ List(1, 2, 3, 4, 5)) yield n * n

List(1, 4, 9, 16, 25)n * n:

This is for when the
for-comprehension
yields / produces a result.

PEP (Scala) 02, King’s College London – p. 12/29

For-Comprehensions
Again

for (n <‐ List(1, 2, 3, 4, 5)) yield n * n

List(1, 4, 9, 16, 25)n * n:

This is for when the
for-comprehension
yields / produces a result.

PEP (Scala) 02, King’s College London – p. 12/29

For-Comprehensions
Again

for (n <‐ List(1, 2, 3, 4, 5)) yield n * n

List(1, 4, 9, 16, 25)n * n:

This is for when the
for-comprehension
yields / produces a result.

PEP (Scala) 02, King’s College London – p. 12/29

For-Comprehensions
Again

for (n <‐ List(1, 2, 3, 4, 5)) yield n * n

vs

for (n <‐ List(1, 2, 3, 4, 5)) println(n)

The second version is in case the for
does not produce any result.

PEP (Scala) 02, King’s College London – p. 13/29

Find something below 4 in a list.
What do you think Scala answers?

List(7,2,3,4,5,6).find(_ < 4)

List(5,6,7,8,9).find(_ < 4)

PEP (Scala) 02, King’s College London – p. 14/29

Find something below 4 in a list.
What do you think Scala answers?

List(7,2,3,4,5,6).find(_ < 4)
res: Option[Int] = Some(2)

List(5,6,7,8,9).find(_ < 4)
res: Option[Int] = None

PEP (Scala) 02, King’s College London – p. 14/29

Option Type
if the value is present, you use

Some(value)

if no value is present, you use

None

e.g. Option[Int], then Some(42) and
None
good for error handling

PEP (Scala) 02, King’s College London – p. 15/29

Option Type

Integer.parseInt(”1234”)

// vs.

def get_me_an_int(s: String) : Option[Int] =
Try(Some(Integer.parseInt(s))).getOrElse(None)

in the Scala code it is clear from the type I
that have to deal with the None-case; no
JavaDoc needed

PEP (Scala) 02, King’s College London – p. 16/29

Higher-Order
Functions

In Scala, functions can take other
functions as arguments and can
return a function as a result.

List(7,2,3,4,5,6).find(_ < 4)

PEP (Scala) 02, King’s College London – p. 17/29

a

Higher-Order
Functions (2)

def even(x: Int) : Boolean = x % 2 == 0

List(1, 2, 3, 4, 5).filter(even)
res : List[Int] = List(2, 4)

List(1, 2, 3, 4, 5).count(even)
res : Int = 2

List(1, 2, 3, 4, 5).find(even)
res: Option[Int] = Some(2)

PEP (Scala) 02, King’s College London – p. 18/29

map (lower case)
applies a function to each element
of a list (and more)

List(1, 2, 3, 4, 5, 6, 7, 8)

List(1, 4, 9, 16, 25, 36, 49, 64)

n

n * n

map

List(1,2,3,4,5,6,7,8).map(n => n * n)

PEP (Scala) 02, King’s College London – p. 19/29

For-Comprehensions
aremaps

for (n <‐ List(1,2,3,4,5,6,7,8))
yield n * n

// is just syntactic sugar for

List(1,2,3,4,5,6,7,8).map(n => n * n)

PEP (Scala) 02, King’s College London – p. 20/29

Map (upper case)

a type, representing a key-value
association datastructure

val ascii =
(’a’ to ’z’).map(c => (c, c.toInt))

val ascii_Map = ascii.toMap

ascii_Map.get(’a’) // ‐> 97

PEP (Scala) 02, King’s College London – p. 21/29

PatternMatching

…on pairs:

def fizz_buzz(n: Int) : String =
(n % 3, n % 5) match {

case (0, 0) => ”fizz buzz”
case (0, _) => ”fizz”
case (_, 0) => ”buzz”
case _ => n.toString

}

PEP (Scala) 02, King’s College London – p. 22/29

Recursion

def fib(n: Int) : Int = {
if (n == 0 || n == 1) 1
else fib(n ‐ 1) + fib(n ‐ 2)

}

PEP (Scala) 02, King’s College London – p. 23/29

Recursion

def my_flatten(xs: List[Option[Int]]): List[Int] =
xs match {

case Nil => Nil
case None :: rest => my_flatten(rest)
case Some(v) :: rest => v :: my_flatten(rest)

}

PEP (Scala) 02, King’s College London – p. 24/29

Questions?

My Office Hours: Thursdays 12 – 14
And specifically for Scala: Tuesdays

10:45 – 11:45

PEP (Scala) 02, King’s College London – p. 25/29

PEP (Scala) 02, King’s College London – p. 26/29

Mind-Blowing Programming Languages:
Overloading in any language is great but it
makes a difference 10/3 or 10.0/3

PEP (Scala) 02, King’s College London – p. 27/29

Mind-Blowing Programming Languages:
PHP (7.0)

Jumping Towers

3 4 2 0 1 End

shortest: 3→ 4→ End

PEP (Scala) 02, King’s College London – p. 28/29

“Children” /moves

[3, 4, 2, 0, 1]

[0, 1]

[2, 0, 1]
[1] End

[0, 1]
[4, 2, 0, 1]…

PEP (Scala) 02, King’s College London – p. 29/29

