
PEP Scala (1)
Email: christian.urban at kcl.ac.uk
Slides & Code: KEATS

PEP (Scala) 01, King’s College London – p. 1/25

Why Scala?

PEP (Scala) 01, King’s College London – p. 2/25

... ...

A former student working now at Quantexa:

“I am a former student. I graduated last year. I got my dream job as a backend Scala
developer. Most of the Scala I know is from PEP 2018/19. My interviewers said they
expect code of a lesser quality even from people with one year of experience.”

Why Scala?

• compiles to the JVM
(also JavaScript, native X86 in the works)

• integrates seamlessly with Java

• combines functional and object-oriented
programming

• no pointers, no null
• often one can write very concise and elegant code

PEP (Scala) 01, King’s College London – p. 3/25

Java vs Scala
1public class Point {
2private final int x, y;
3

4public Point(int x, int y) {
5this.x = x;
6this.y = y;
7}
8

9public int x() { return x; }
10

11public int y() { return y; }
12}

case class Point(val x: Int, val y: Int)
PEP (Scala) 01, King’s College London – p. 4/25

Java

Scala

First Steps: Scala Tools
• contains a REPL
• I use VS Code and a Scala extension (M’place)

• there is a plugin for Eclipse (called Scala IDE)

• there is also a plugin for IntelliJ
PEP (Scala) 01, King’s College London – p. 5/25

My personal keboard shortcut for VS Code
(in keybindings.json)

[
{

”key”: ”ctrl+enter”,
”command”: ”workbench.action.terminal.runSelectedText”,
”when”: ”editorTextFocus && editorHasSelection”

}
]

PEP (Scala) 01, King’s College London – p. 6/25

Why Scala?

Money?

∗ source: Stackoverflow Developer Survey, 2019

Elm, Rust, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)…
PEP (Scala) 01, King’s College London – p. 7/25

a

a

Why Scala?
Money?

∗ source: Stackoverflow Developer Survey, 2019

Elm, Rust, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)…
PEP (Scala) 01, King’s College London – p. 7/25

a

a

Why Scala?
Money?

∗ source: Stackoverflow Developer Survey, 2019

Elm, Rust, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)…
PEP (Scala) 01, King’s College London – p. 7/25

a

a

Functional
Programming!

Why Functional
Programming?

Elm, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)…

PEP (Scala) 01, King’s College London – p. 8/25

Why Functional
Programming?

Elm, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)…

PEP (Scala) 01, King’s College London – p. 8/25

“If you want to see which features will be in
mainstream programming languages tomorrow,
then take a look at functional programming
languages today.”

—Simon Peyton Jones (works at Microsoft)
main developer of the Glasgow Haskell Compiler

Why Functional
Programming?

Elm, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)…

PEP (Scala) 01, King’s College London – p. 8/25

Immutability

PEP (Scala) 01, King’s College London – p. 9/25

∗ from “What pure functional programming is all about?”

Why bother? or
What is wrong with this?

for (int i = 10; i < 20; i++) {

//...Do something interesting
// with i...

}

PEP (Scala) 01, King’s College London – p. 10/25

1986

1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 11/25

64K RAM, no HD, no monitor, lots of cables

3 days

1986 1988, C

1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 11/25

1986 1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 11/25

1986 1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 11/25

1986 1988, C 1992, Linux

1996

2000

2012?

2017

PEP (Scala) 01, King’s College London – p. 11/25

1986 1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 11/25

1986 1988, C 1992, Linux

1996

20002012?

2017
PEP (Scala) 01, King’s College London – p. 11/25

1986 1988, C 1992, Linux

1996

20002012?

2017
PEP (Scala) 01, King’s College London – p. 11/25

1986: no Internet
no Amazon
no FB, no mobiles,…

1986 1988, C 1992, Linux

1996

20002012?

2017
PEP (Scala) 01, King’s College London – p. 11/25

1986: no Internet
no Amazon
no FB, no mobiles,…

Speedup by Moore’s Law

1986: 3 days 1996: 135 mins
1988: 1.5 days 1998: 67 mins
1990: 18 hs 2000: 33 mins
1992: 9 hs 2002: 16 mins
1994: 4.5 hs ???

Every two years, computers got twice as powerful.

1986 1988, C 1992, Linux

1996

20002012?

2017
PEP (Scala) 01, King’s College London – p. 11/25

1986: no Internet
no Amazon
no FB, no mobiles,…

Seq vs Par

PEP (Scala) 01, King’s College London – p. 12/25

Seq vs Par

PEP (Scala) 01, King’s College London – p. 12/25

in Java or C++

Seq vs Par

PEP (Scala) 01, King’s College London – p. 12/25

In FP: Once a variable is created, it is assigned a value and then never
changed again⇒ no synchronisation needed

Types
• Base types
Int, Long, BigInt, Float, Double
String, Char
Boolean

• Compound types
List[Int] lists of Int’s
Set[Double] sets of Double’s
(Int, String) Int-String pair
List[(BigInt, String)] lists of BigInt-String

pairs
List[List[Int]] list of lists of Int’s
Option[Int] options of Int’s

PEP (Scala) 01, King’s College London – p. 13/25

Coursework Dates

Similar to C++:

• Preliminary Parts: Wednesdays 4pm
• Preliminary Part 6: 3% (13 November)
• Preliminary Part 7: 4% (20 November)
• Preliminary Part 8: 4% (27 November)
• Preliminary Part 9: 4% (5 December)

• Core Part: 35% (15 January 2020)

PEP (Scala) 01, King’s College London – p. 14/25

Coursework
• Sorry, I might have been a bit wordy:

Part 6 of CW description is 7 pages, but I only
needed < 100 loc for all Part 6.

• there is feedback when pushing code to github

• there are jar-files you can use to test my reference
implementation

• we want you to learn FP!
no vars, no mutable data-structures

e.g. no Arrays, no ListBuffer
PEP (Scala) 01, King’s College London – p. 15/25

a

The Joy of Immutability
• If you need to manipulate some data in a list say,

then you make a new list with the updated values,
rather than revise the original list. Easy!

val old_list = List(1, 2, 3, 5)
val new_list = 0 :: old_list

// ‐> List(0, 1, 2, 3, 4, 5)

• You do not have to be defensive about who can
access the data.

• You can look at your code in isolation.

PEP (Scala) 01, King’s College London – p. 16/25

Email: Hate ’val’
Subject: Hate ’val’ 01:00 AM

Hello Mr Urban,

I just wanted to ask, how are we suppose to work with
the completely useless val, that can’t be changed ever?
Why is this rule active at all? I’ve spent 4 hours not
thinking on the coursework, but how to bypass this
annoying rule. What’s the whole point of all these
coursework, when we can’t use everything Scala gives
us?!?

Regards.
«deleted»

PEP (Scala) 01, King’s College London – p. 17/25

Subject: Re: Hate ’val’ 01:02 AM

«my usual rant about fp…
concurrency bla bla… better programs yada»

PS: What are you trying to do where you desperately
want to use var?

PEP (Scala) 01, King’s College London – p. 18/25

PEP (Scala) 01, King’s College London – p. 19/25

Subject: Re: Re: Hate ’val’ 01:04 AM

Right now my is_legal function works fine:

def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {
var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 < 0 || x._2 < 0) {
else { var breakLoop = false

if(path == Nil) { boolReturn = true }
else { for(i <‐ 0 until path.length) {

if(breakLoop == false) {
if(path(i) == x) {

boolReturn = true
breakLoop = true

}
else { boolReturn = false }

} else breakLoop
}

}
boolReturn

}

…but I can’t make it work with
boolReturn being val. What approach
would you recommend in this case,
and is using var in this case justified?

PEP (Scala) 01, King’s College London – p. 19/25

Subject: Re: Re: Hate ’val’ 01:04 AM

Right now my is_legal function works fine:

def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {
var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 < 0 || x._2 < 0) {
else { var breakLoop = false

if(path == Nil) { boolReturn = true }
else { for(i <‐ 0 until path.length) {

if(breakLoop == false) {
if(path(i) == x) {

boolReturn = true
breakLoop = true

}
else { boolReturn = false }

} else breakLoop
}

}
boolReturn

}

…but I can’t make it work with
boolReturn being val. What approach
would you recommend in this case,
and is using var in this case justified?

Me:

PEP (Scala) 01, King’s College London – p. 20/25

Subject: Re: Re: Re: Hate ’val’ 01:06 AM

OK. So you want to make sure that the x-position is not outside the
board....and furthermore you want to make sure that the x-position is
not yet in the path list. How about something like

def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
...<<some board conditions>>... && !path.contains(x)

Does not even contain a val.

(This is all on one line)

PEP (Scala) 01, King’s College London – p. 21/25

Subject: Re: Re: Re: Re: Hate ’val’ 11:02 AM

THANK YOU! You made me change my coding
perspective. Because of you, I figured out the next
one…

PEP (Scala) 01, King’s College London – p. 21/25

Subject: Re: Re: Re: Re: Hate ’val’ 11:02 AM

THANK YOU! You made me change my coding
perspective. Because of you, I figured out the next
one…

Me:

Conclusion for Today
• Scala is still under development, 2.13.1 came out in

Sept.
(the compiler is terribly slow)

• http://www.scala‐lang.org/

• it is a rather deep language…i.e. gives you a lot of
rope to shoot yourself

• learning functional programming is not easy…when
you have spent all of your career thinking in an
imperative way, it is hard to change

• hope you have fun with Scala and the assignments
PEP (Scala) 01, King’s College London – p. 22/25

http://www.scala-lang.org/

Questions?

My Office Hours: Thursdays 12 – 14
And specifically for Scala: Tuesdays 10:45 – 11:45

PEP (Scala) 01, King’s College London – p. 23/25

PEP (Scala) 01, King’s College London – p. 24/25

Mind-Blowing
Programming Languages: C/C++

