
PEPScala (3)
Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides & Code: KEATS

PEP (Scala) 03, King’s College London – p. 1/10

The Joy of Immutability

If you need to manipulate some data in a list say,
then you make a new list with the updated values,
rather than revise the original list. Easy!

val old_list = List(1, 2, 3, 5)
val new_list = 0 :: old_list

You do not have to be defensive about who can
access the data (concurrency, lazyness).

PEP (Scala) 03, King’s College London – p. 2/10

Email: Hate ’val’
Subject: Hate ’val’ 01:00 AM
Hello Mr Urban,
I just wanted to ask, how are we suppose to work
with the completely useless val, that can’t be
changed ever? Why is this rule active at all? I’ve
spent 4 hours not thinking on the coursework,
but how to bypass this annoying rule. What’s the
whole point of all these coursework, when we
can’t use everything Scala gives us?!?
Regards.
«deleted»

PEP (Scala) 03, King’s College London – p. 3/10

Subject: Re: Hate ’val’ 01:02 AM

«my usual rant about fp…
concurrency bla bla… better programs yada»

PS: What are you trying to do where you
desperately want to use var?

PEP (Scala) 03, King’s College London – p. 4/10

PEP (Scala) 03, King’s College London – p. 5/10

Subject: Re: Re: Hate ’val’ 01:04 AM
Right nowmy is_legal functionworks fine:
def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {

var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 < 0 || x._2 < 0) {
else { var breakLoop = false

if(path == Nil) { boolReturn = true }
else { for(i <- 0 until path.length) {

if(breakLoop == false) {
if(path(i) == x) {

boolReturn = true
breakLoop = true

}
else { boolReturn = false }

} else breakLoop
}

}
boolReturn

}

…but I can’t make it workwith
boolReturn being val. What
approachwould you recommend
in this case, and is using var in
this case justified?

PEP (Scala) 03, King’s College London – p. 5/10

Subject: Re: Re: Hate ’val’ 01:04 AM
Right nowmy is_legal functionworks fine:
def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {

var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 < 0 || x._2 < 0) {
else { var breakLoop = false

if(path == Nil) { boolReturn = true }
else { for(i <- 0 until path.length) {

if(breakLoop == false) {
if(path(i) == x) {

boolReturn = true
breakLoop = true

}
else { boolReturn = false }

} else breakLoop
}

}
boolReturn

}

…but I can’t make it workwith
boolReturn being val. What
approachwould you recommend
in this case, and is using var in
this case justified?

Me:

PEP (Scala) 03, King’s College London – p. 6/10

Subject: Re: Re: Re: Hate ’val’ 01:06 AM

OK. So you want to make sure that the x-position is not outside
the board....and furthermore you want to make sure that the
x-position is not yet in the path list. How about something like

def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
...<<some board conditions>>... && !path.contains(x)

Does not even contain a val.

(This is all on one line)

PEP (Scala) 03, King’s College London – p. 7/10

Subject: Re: Re: Re: Re: Hate ’val’ 11:02 AM

THANK YOU! You made me change my coding
perspective. Because of you, I figured out the
next one…

Types
Base types
Int, Long, BigInt, Float, Double
String, Char
Boolean
Compound types
List[Int] lists of Int’s
Set[Double] sets of Double’s
(Int, String) Int-String pair
List[(BigInt, String)] lists of BigInt-String

pairs
List[List[Int]] list of lists of Int’s

PEP (Scala) 03, King’s College London – p. 8/10

Where to go on from here?
Martin Odersky (EPFL)…he is currently
throwing out everything and starts again with the
dotty compiler for Scala

Elm (http://elm-lang.org)…web applications
with style

Haskell, Ocaml, Standard ML, Scheme

PEP (Scala) 03, King’s College London – p. 9/10

http://elm-lang.org

Questions?

Thanks: “By the way - Scala is really getting quite fun when you start to get the
hang of it…”

PEP (Scala) 03, King’s College London – p. 10/10

