PEP Scala (5)

Email: christian.urban at kcl.ac.uk

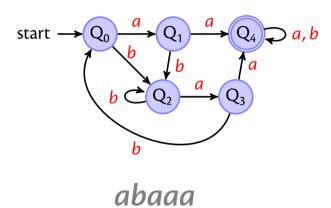
Slides & Code: KEATS

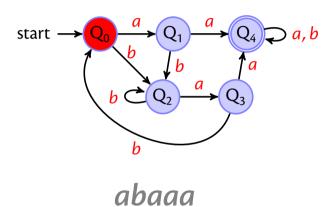
Plan for Today

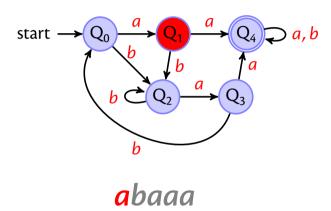
Being Lazy
Polymorphic Types
Immutable OOP
Making Fun about Scala

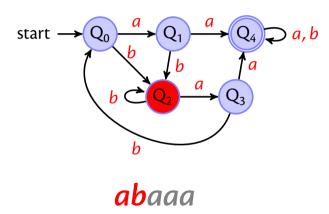
How To calcululate 100 Mio Collatz Series?

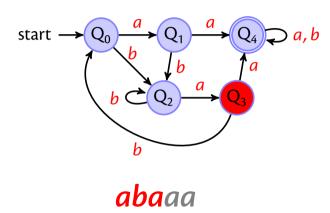
```
(1L to 100_000_000).map(collatz).max
```

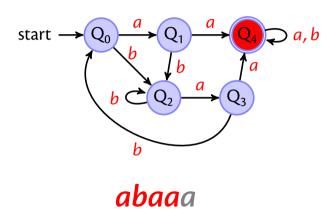

Polyorphic Types

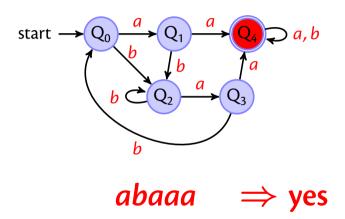

To be avoided:

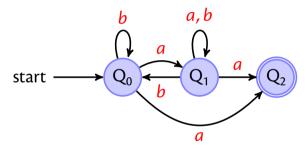

```
def length string list(lst: List[String]): Int =
 lst match {
   case Nil => 0
   case x::xs => 1 + length string list(xs)
def length int list(lst: List[Int]): Int =
 lst match {
   case Nil \Rightarrow 0
   case x::xs => 1 + length int list(xs)
```


Polyorphic Types

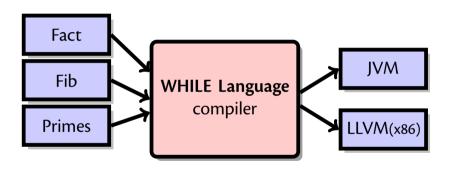

```
def length[A](lst: List[A]): Int = lst match {
  case Nil => 0
  case x::xs => 1 + length(xs)
length(List("1", "2", "3", "4"))
length(List(1, 2, 3, 4))
def map[A, B](lst: List[A], f: A => B): List[B] =
 lst match {
   case Nil => Nil
   case x::xs => f(x)::map(xs, f)
```



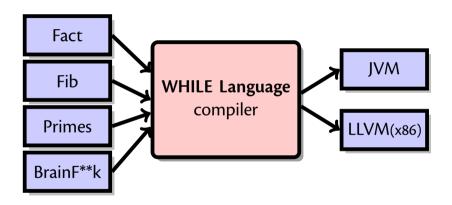



A **deterministic finite automaton** (DFA) consists of 5 things:

an alphabet Σ a set of states Qs one of these states is the start state Q_0 some states are accepting states F, and there is transition function δ


which takes a state and a character as arguments and produces a new state; this function might not be everywhere defined

$$A(\Sigma, Qs, Q_0, F, \delta)$$


NFAs

Compilers 6CCS3CFL

Compilers 6CCS3CFL

Dijkstra on Testing

"Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate for showing their absence."

Proving Programs to be Correct

Theorem: There are infinitely many prime numbers.

Proof ...

similarly

Theorem: The program is doing what it is supposed to be doing.

Long, long proof ...

This can be a gigantic proof. The only hope is to have help from the computer. 'Program' is here to be understood to be quite general (compiler, OS, ...).

Can This Be Done?

in 2011, verification of a small C-compiler (CompCert)

"if my input program has a certain behaviour, then the compiled machine code has the same behaviour" is as good as gcc -01, but much, much less buggy

Fuzzy Testing C-Compilers

tested GCC, LLVM and others by randomly generating C-programs found more than 300 bugs in GCC and also many in LLVM (some of them highest-level critical)

about CompCert:

"The striking thing about our CompCert results is that the middle-end bugs we found in all other compilers are absent. As of early 2011, the under-development version of CompCert is the only compiler we have tested for which Csmith cannot find wrong-code errors. This is not for lack of trying: we have devoted about six CPU-years to the task."

seL4 / Isabelle

verified a microkernel operating system (\approx 8000 lines of C code)

US DoD has competitions to hack into drones; they found that the isolation guarantees of seL4 hold up

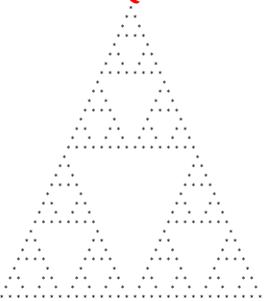
CompCert and seL4 sell their code

seL4 / Isabelle

verified a microkernel (lines of C code)

US DoD has competition found that the isolation

CompCert and seL4 sell their code


Where to go on from here?

Martin Odersky (EPFL)...he is currently throwing out everything and starts again with the dotty compiler for Scala 3.0

Elm (http://elm-lang.org)...web applications with style

Haskell, Ocaml, Standard ML, Scheme, ...

Questions?


```
+++++++|>+>++++<-|>++>>
+<[-[>>+<<-]+>>]>+[-<<<[-
>[+[-]+>++>>-<<]<[<]>>++
++++[<<+++++>>-]+<<++.[-]
<<]>.>+[>>]>+]
```


Mind-Blowing Programming Languages: Scala?