
A Crash-Course in Scala
“Scala — Slowly Compiled Academic LAnguage”

— a joke read on TwiĴer

Scala is a programming language that combines functional and object-oriented
programming-styles. It has received quite a bit of aĴention in the last five or
so years. One reason for this aĴention is that, like the Java programming lan-
guage, Scala compiles to the Java Virtual Machine (JVM) and therefore Scala
programs can run under MacOSX, Linux and Windows.1 Unlike Java, how-
ever, Scala often allows programmers to write very concise and elegant code.
Some therefore say: “Scala is the beĴer Java”.2 Also a number of companies
(the Guardian, TwiĴer, Coursera, FourSquare, LinkedIn to name a few) either
use Scala exclusively in production code, or at least to some substantial degree.
Scala seems also to be useful in job-interviews (in Data Science) according to
this anecdotal report

https://techcrunch.com/2016/06/14/scala-is-the-new-golden-child/

The official Scala compiler can be downloaded from

http://www.scala-lang.org

A ready-made bundle with the Eclipse IDE is at

http://scala-ide.org/download/sdk.html

When developing Scala programs, I personally prefer to use Emacs or Sublime
as my environment, since they provide an easy access to the Scala REPL (see
below). But it is also possible to work completely on the command line and
also with heavy-duty IDEs like Eclipse of IntelliJ. There is even an online editor
and environment for developing Scala programs called ScalaFiddle

https://scalafiddle.io

The Very Basics
One advantage of Scala over Java is that it includes an interpreter (a REPL, or
Read-Eval-Print-Loop) with which you can run and test small code-snippets
without the need of a compiler. This helps a lot with interactively developing
programs. This is really the preferred way of writing small Scala programs.
Once you installed Scala, you can start the interpreter by typing on the com-
mand line:

1There are also experimental backends for Android and JavaScript; and also work is under way
to have a native compiler, see https://github.com/scala-native/scala-native.

2https://www.slideshare.net/maximnovak/joy-of-scala

1

https://techcrunch.com/2016/06/14/scala-is-the-new-golden-child/
http://www.scala-lang.org
http://scala-ide.org/download/sdk.html
https://scalafiddle.io
https://github.com/scala-native/scala-native
https://www.slideshare.net/maximnovak/joy-of-scala


$ scala
Welcome to Scala 2.12.4 (Java HotSpot(TM) 64-Bit Server VM, Java 9).
Type in expressions for evaluation. Or try :help.

scala>

The precise response may vary depending on the version and platform where
you installed Scala. At the Scala prompt you can type things like 2 + 3 Ret and
the output will be

scala> 2 + 3
res0: Int = 5

indicating that the result of the addition is of type Int and the actual result is 5;
res0 is a name that Scala gives automatically to the result. You can reuse this
name later on. Another classic example you can try out is

scala> print("hello world")
hello world

Note that in this case there is no result. The reason is that print does not actu-
ally produce a result (there is no resX and no type), rather it is a function that
causes the side-effect of printing out a string. Once you are more familiar with
the functional programming-style, you will know what the difference is be-
tween a function that returns a result, like addition, and a function that causes
a side-effect, like print. We shall come back to this point later, but if you are
curious now, the laĴer kind of functions always has Unit as return type. It is
just not printed.

You can try more examples with the Scala interpreter, but try first to guess
what the result is (not all answers by Scala are obvious):

scala> 2 + 2
scala> 1 / 2
scala> 1.0 / 2
scala> 1 / 2.0
scala> 1 / 0
scala> 1.0 / 0.0
scala> true == false
scala> true && false
scala> 1 > 1.0
scala> "12345".length

Stand-Alone Scala Apps
If you want to write a stand-alone app in Scala, you can implement an object
that is an instance of App, say

2



object Hello extends App {
println("hello world")

}

save it in a file, for example hello-world.scala, and then run the compiler and
runtime environment:

$ scalac hello-world.scala
$ scala Hello
hello world

Like Java, Scala targets the JVM and consequently Scala programs can also be
executed by the bog-standard Java Runtime. This only requires the inclusion
of scala-library.jar, which on my computer can be done as follows:

$ scalac hello-world.scala
$ java -cp /usr/local/src/scala/lib/scala-library.jar:. Hello
hello world

You might need to adapt the path to where you have installed Scala.

Values
In the lectures I will try to avoid as much as possible the term variables familiar
from other programming languages. The reason is that Scala has values, which
can be seen as abbreviations of larger expressions. For example

scala> val x = 42
x: Int = 42

scala> val y = 3 + 4
y: Int = 7

scala> val z = x / y
z: Int = 6

Why the kerfuffle about values? Well, values are immutable. You cannot change
their value after you defined them. If you try to reassign z above, Scala will yell
at you:

scala> z = 9
error: reassignment to val

z = 9
^

So it would be a bit absurd to call values as variables...you cannot change them.
You might think you can re-assign them like

3



scala> val x = 42
scala> val z = x / 7
scala> val x = 70
scala> println(z)

but try to guess what Scala will print out for z? Will it be 6 or 10? A final word
about values: Try to stick to the convention that names of values should be
lower case, like x, y, foo41 and so on.

Function Definitions
We do functional programming. So defining functions will be our main occu-
pation. A function f taking a single argument of type Int can be defined in
Scala as follows:

def f(x: Int) : String = EXPR

This function returns the value resulting from evaluating the expression EXPR
(whatever is substituted for this). The result will be of type String. It is a
good habbit to include this information about the return type always. Simple
examples of Scala functions are:

def incr(x: Int) : Int = x + 1
def double(x: Int) : Int = x + x
def square(x: Int) : Int = x * x

The general scheme for a function is

def fname(arg1: ty1, arg2: ty2,..., argn: tyn): rty = {
BODY

}

where each argument requires its type and the result type of the function, rty,
should be given. If the body of the function is more complex, then it can be
enclosed in braces, like above. If it it is just a simple expression, like x + 1, you
can omit the braces. Very often functions are recursive (call themselves) like
the venerable factorial function.

def fact(n: Int): Int =
if (n == 0) 1 else n * fact(n - 1)

Loops, or beĴer the Absence thereof
Coming from Java or C++, you might be surprised that Scala does not really
have loops. It has instead, what is in functional programming called, maps. To
illustrate how they work, let us assume you have a list of numbers from 1 to
8 and want to build the list of squares. The list of numbers from 1 to 8 can be
constructed in Scala as follows:

4



scala> (1 to 8).toList
res1: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8)

Generating from this list, the list of squares in a programming language such
as Java, you would assume the list is given as a kind of array. You would then
iterate, or loop, an index over this array and replace each entry in the array by
the square. Right? In Scala, and in other functional programming languages,
you use maps to achieve the same.

Amap essentially takes a function that describes how each element is trans-
formed (for example squared) and a list over which this function should work.
There are two forms to express such maps in Scala. The first way is called a
for-comprehension. Squaring the numbers from 1 to 8 would look as follows:

scala> for (n <- (1 to 8).toList) yield n * n
res2: List[Int] = List(1, 4, 9, 16, 25, 36, 49, 64)

The important keywords are for and yield. This for-comprehension roughly
states that from the list of numbers we draw ns and compute the result of
n * n. As you can see, we specified the list where each n comes from, namely
(1 to 8).toList, and how each element needs to be transformed. This can
also be expressed in a second way in Scala by using directly maps as follows:

scala> (1 to 8).toList.map(n => n * n)
res3 = List(1, 4, 9, 16, 25, 36, 49, 64)

In this way, the expression n => n * n stands for the function that calculates
the square (this is how the ns are transformed). This expression for functions
might remind you of your lessons about the lambda-calculus where this would
have beenwriĴen as λn. n ∗ n. It might not be obvious, but for-comprehensions
are just syntactic sugar: when compiling, Scala translates for-comprehensions
into equivalent maps. This even works when for-comprehensions get more
complicated (see below).

The very charming feature of Scala is that suchmaps or for-comprehensions
can be wriĴen for any kind of data collection, such as lists, sets, vectors, options
and so on. For example if we instead compute the reminders modulo 3 of this
list, we can write

scala> (1 to 8).toList.map(n => n % 3)
res4 = List(1, 2, 0, 1, 2, 0, 1, 2)

If we, however, transform the numbers 1 to 8 not into a list, but into a set, and
then compute the reminders modulo 3 we obtain

scala> (1 to 8).toSet[Int].map(n => n % 3)
res5 = Set(2, 1, 0)

This is the correct result for sets, as there are only three equivalence classes of
integers modulo 3. Note that in this example we need to “help” Scala to trans-
form the numbers into a set of integers by explicitly annotating the type Int.
Since maps and for-comprehensions are just syntactic variants of each other,

5



the laĴer can also be wriĴen as
scala> for (n <- (1 to 8).toSet[Int]) yield n % 3
res5 = Set(2, 1, 0)

For-comprehensions can also be nested and the selection of elements can be
guarded. For example if we want to pair up the numbers 1 to 4 with the leĴers
a to c, we can write

scala> for (n <- (1 to 4).toList;
m <- ('a' to 'c').toList) yield (n, m)

res6 = List((1,a), (1,b), (1,c), (2,a), (2,b), (2,c),
(3,a), (3,b), (3,c), (4,a), (4,b), (4,c))

Or if we want to find all pairs of numbers between 1 and 3 where the sum is an
even number, we can write

scala> for (n <- (1 to 3).toList;
m <- (1 to 3).toList;
if (n + m) % 2 == 0) yield (n, m)

res7 = List((1,1), (1,3), (2,2), (3,1), (3,3))

The if-condition in the for-comprehension filters out all pairs where the sum
is not even.

While hopefully this all looks reasonable, there is one complication: In the
examples abovewe alwayswanted to transformone list into another list (e.g. list
of squares), or one set into another set (set of numbers into set of reminders
modulo 3). What happens if we just want to print out a list of integers? Then
actually the for-comprehension needs to be modified. The reason is that print,
you guessed it, does not produce any result, but only produces what is in the
functional-programming-lingo called a side-effect. Printing out the list of num-
bers from 1 to 5 would look as follows

scala> for (n <- (1 to 5).toList) print(n)
12345

where you need to omit the keyword yield. You can also do more elaborate
calculations such as

scala> for (n <- (1 to 5).toList) {
val square_n = n * n
println(s"$n * $n = $square_n")

}
1 * 1 = 1
2 * 2 = 4
3 * 3 = 9
4 * 4 = 16
5 * 5 = 25

In this code I use a variable assignment (val square_n = ... ) and alsowhat is
called in Scala a string interpolation, wriĴen s"...". The laĴer is for printing out

6



an equation. It allows me to refer to the integer values n and square_n inside a
string. This is very convenient for printing out “things”.

The corresponding map construction for functions with side-effects is in
Scala called foreach. So you could also write

scala> (1 to 5).toList.foreach(n => print(n))
12345

or even just

scala> (1 to 5).toList.foreach(print)
12345

Again I hope this reminds you a bit of your lambda-calculus lessons, where an
explanation is given why both forms produce the same result.

If you want to find out more about maps and functions with side-effects,
you can ponder about the response Scala gives if you replace foreach by map in
the expression above. Scala will still allow map with side-effect functions, but
then reacts with a slightly interesting result.

Types
Inmost functional programming languages, types play an important role. Scala
is such a language. You have already seen built-in types, like Int, Boolean,
String and BigInt, but also user-defined ones, like Rexp. Unfortunately, types
can be a thorny subject, especially in Scala. For example, why do we need to
give the type to toSet[Int], but not to toList? The reason is the power of
Scala, which sometimes means it cannot infer all necessary typing information.
At the beginning while geĴing familiar with Scala, I recommend a “play-it-by-
ear-approach” to types. Fully understanding type-systems, especially compli-
cated ones like in Scala, can take a module on their own.3

In Scala, types are needed whenever you define an inductive datatype and
also whenever you define functions (their arguments and their results need a
type). Base types are types that do not take any (type)arguments, for exam-
ple Int and String. Compound types take one or more arguments, which
as seen earlier need to be given in angle-brackets, for example List[Int] or
Set[List[String]] or Map[Int, Int].

There are a few special type-constructors that fall outside this paĴern. One
is for tuples, where the type is wriĴen with parentheses. For example

(Int, Int, String)

is for a triple (a tuple with three components—two integers and a string). Tu-
ples are helpful if you want to define functions with multiple results, say the

3Still, such a study can be a rewarding training: If you are in the business of designing new
programming languages, you will not be able to turn a blind eye to types. They essentially help
programmers to avoid common programming errors and help with maintaining code.

7



function returning the quotient and reminder of two numbers. For this you
might define:

def quo_rem(m: Int, n: Int) : (Int, Int) = (m / n, m % n)

Since this function returns a pair of integers, its return type needs to be of type
(Int, Int). Incidentally, this is also the input type of this function. Notice this
function takes two arguments, namely m and n, both of which are integers. They
are “packaged” in a pair. Consequently the complete type of quo_rem is

(Int, Int) => (Int, Int)

Another special type-constructor is for functions, wriĴen as the arrow =>.
For example, the type Int => String is for a function that takes an integer as
input argument and produces a string as result. A function of this type is for
instance

def mk_string(n: Int) : String = n match {
case 0 => "zero"
case 1 => "one"
case 2 => "two"
case _ => "many"

}

It takes an integer as input argument and returns a string. Unlike other func-
tional programming languages, there is in Scala no easy way to find out the
types of existing functions, except by looking into the documentation

http://www.scala-lang.org/api/current/

The function arrow can also be iterated, as in Int => String => Boolean.
This is the type for a function taking an integer as first argument and a string
as second, and the result of the function is a boolean. Though silly, a function
of this type would be

def chk_string(n: Int)(s: String) : Boolean =
mk_string(n) == s

which checks whether the integer n corresponds to the name s given by the
function mk_string. Notice the unusual way of specifying the arguments of
this function: the arguments are given one after the other, instead of being in
a pair (what would be the type of this function then?). This way of specifying
the arguments can be useful, for example in situations like this

scala> List("one", "two", "three", "many").map(chk_string(2))
res4 = List(false, true, false, false)

scala> List("one", "two", "three", "many").map(chk_string(3))
res5 = List(false, false, false, true)

In each case we can give to map a specialised version of chk_string—once spe-
cialised to 2 and once to 3. This kind of “specialising” a function is called partial

8

http://www.scala-lang.org/api/current/


application—we have not yet given to this function all arguments it needs, but
only some of them.

Coming back to the type Int => String => Boolean. The rule about such
function types is that the right-most type specifies what the function returns (a
boolean in this case). The types before that specify how many arguments the
function expects and what their type is (in this case two arguments, one of type
Int and another of type String). Given this rule, what kind of function has
type (Int => String) => Boolean? Well, it returns a boolean. More interest-
ingly, though, it only takes a single argument (because of the parentheses). The
single argument happens to be another function (taking an integer as input and
returning a string). Remember that mk_string is just such a function. So how
can we use it? For this define the somewhat silly function apply_3:

def apply_3(f: Int => String): Bool = f(3) == "many"

scala> apply_3(mk_string)
res6 = true

You might ask: Apart from silly functions like above, what is the point of
having functions as input arguments to other functions? In Java there is indeed
no need of this kind of feature: at least in the past it did not allow such construc-
tions. I think, the point of Java 8 is to lift this restriction. But in all functional
programming languages, including Scala, it is really essential to allow func-
tions as input argument. Above you already seen map and foreachwhich need
this. Consider the functions print and println, which both print out strings,
but the laĴer adds a line break. You can call foreach with either of them and
thus changing how, for example, five numbers are printed.

scala> (1 to 5).toList.foreach(print)
12345
scala> (1 to 5).toList.foreach(println)
1
2
3
4
5

This is actually one of the main design principles in functional programming.
You have generic functions like map and foreach that can traverse data contain-
ers, like lists or sets. They then take a function to specify what should be done
with each element during the traversal. This requires that the generic traversal
functions can cope with any kind of function (not just functions that, for ex-
ample, take as input an integer and produce a string like above). This means
we cannot fix the type of the generic traversal functions, but have to keep them
polymorphic.4

There is one more type constructor that is rather special. It is called Unit.
4Another interestic topic about types, but we omit it here for the sake of brevity.

9



Recall that Boolean has two values, namely true and false. This can be used,
for example, to test something and decide whether the test succeeds or not. In
contrast the type Unit has only a single value, wriĴen (). This seems like a
completely useless type and return value for a function, but is actually quite
useful. It indicates when the function does not return any result. The purpose
of these functions is to cause something being wriĴen on the screen or wriĴen
into a file, for example. This is what is called they cause some effect on the side,
namely a new content displayed on the screen or some new data in a file. Scala
uses the Unit type to indicate that a function does not have a result, but poten-
tially causes some side-effect. Typical examples are the printing functions, like
print.

More TBD.

More Info
There is much more to Scala than I can possibly describe in this document.
Fortunately there are a number of free books about Scala and of course lots of
help online. For example

• http://www.scala-lang.org/docu/files/ScalaByExample.pdf

• http://www.scala-lang.org/docu/files/ScalaTutorial.pdf

• https://www.youtube.com/user/ShadowofCatron

• http://docs.scala-lang.org/tutorials

• https://www.scala-exercises.org

There is also a course at Coursera on Functional Programming Principles in
Scala by Martin Odersky, the main developer of the Scala language. And a
document that explains Scala for Java programmers

• http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

While I am quite enthusiastic about Scala, I am also happy to admit that it
has more than its fair share of faults. The problem seen earlier of having to give
an explicit type to toSet, but not toList is one of them. There are also many
“deep” ideas about types in Scala, which even to me as seasoned functional
programmer are puzzling. Whilst implicits are great, they can also be a source
of great headaches, for example consider the code:

scala> List (1, 2, 3) contains "your mom"
res1: Boolean = false

Rather than returning false, this code should throw a typing-error. There are
alsomany limitations Scala inherited from the JVM that can be really annoying.
For example a fixed stack size. One can work around this particular limitation,
but why does one have to? More such ‘puzzles’ can be found at

10

http://www.scala-lang.org/docu/files/ScalaByExample.pdf
http://www.scala-lang.org/docu/files/ScalaTutorial.pdf
https://www.youtube.com/user/ShadowofCatron
http://docs.scala-lang.org/tutorials
https://www.scala-exercises.org
http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html


http://scalapuzzlers.com and http:
//latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/

Even if Scala has been a success in several high-profile companies, there is
also a company (Yammer) that first used Scala in their production code, but
then moved away from it. Allegedly they did not like the steep learning curve
of Scala and also that new versions of Scala often introduced incompatibilities
in old code. In the past two months there have also been two forks of the Scala
compiler. It needs to be seen what the future brings for Scala.

11

http://scalapuzzlers.com
http://latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/
http://latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/

