Part 8 (Scala)

“The problem with object-oriented languages is they've got all this implicit,
environment that they carry around with them. You wanted a banana but
what you got was a gorilla holding the banana and the entire jungle.”

— Joe Armstrong (creator of the Erlang programming language)

This part is about searching and backtracking. You are asked to implement
Scala programs that solve various versions of the Knight’s Tour Problem on a
chessboard. The preliminary part (4%) is due on 4 December at 4pm; the core
part is due on 15 January at 4pm. Note the core, more advanced, part might
include material you have not yet seen in the first three lectures.

A Important

* Make sure the files you submit can be processed by just calling
scala <<filename.scala>> on the command line.! Use the template
files provided and do not make any changes to arguments of functions
or to any types. You are free to implement any auxiliary function you
might need.

* Do not leave any test cases running in your code because this might
slow down your program! Comment out test cases before submission,
otherwise you might hit a time-out.

* Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot create new Arrays or ListBuffers,
for example.

* Do not use return in your code! It has a different meaning in Scala than
in Java. It changes the meaning of your program, and you should never
use it.

* Do not use var! This declares a mutable variable. Only use val!

* Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
30 seconds on my laptop: If you calculate a result once, try to avoid to calculate
the result again. Feel free to copy any code you need from files knight1.scala,
knight2.scala and knight3.scala.

A Disclaimer

It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Background

The Knight’s Tour Problem is about finding a tour such that the knight visits
every field on an n x n chessboard once. For example on a 5 x 5 chessboard, a
knight'’s tour is:

0o 1 2 3 4

This tour starts in the right-upper corner, then moves to field (3,2), then (4,0)
and so on. There are no knight’s tours on 2 x 2, 3 x 3 and 4 x 4 chessboards,
but for every bigger board there is.

A knight's tour is called closed, if the last step in the tour is within a knight’s
move to the beginning of the tour. So the above knight’s tour is not closed
because the last step on field (0,4) is not within the reach of the first step on
(4,4). It turns out there is no closed knight’s tour on a 5 x 5 board. But there
are on a 6 X 6 board and on bigger ones, for example

where the 35th move can join up again with the Oth move.

If you cannot remember how a knight moves in chess, or never played chess,
below are all potential moves indicated for two knights, one on field (2,2) (blue
moves) and another on (7,7) (red moves):

L All major OSes, including Windows, have a command line. So there is no good reason to not
download Scala, install it and run it on your own computer. Just do it!

7
6
5
4
3
2
1
0

Reference Implementation

This Scala part comes with three reference implementations in form of jar-files.
This allows you to run any test cases on your own computer. For example you
can call Scala on the command line with the option -cp knight1.jar and then
query any function from the knightl.scala template file. As usual you have
to prefix the calls with CW8a, CW8b and CW8c. Since some of the calls are time
sensitive, I included some timing information. For example

$ scala -cp knightl.jar

scala> CW8a.enum_tours(5, List((@, ©))).length
Time needed: 1.722 secs.

reso: Int = 304

scala> CW8a.print_board(8, CW8a.first_tour(8, List((®, ©0))).get)
Time needed: 15.411 secs.

51 46 55 44 53 4 21 12
56 43 52 3 22 13 24 5
47 56 45 54 25 20 11 14
42 57 2 49 40 23 6 19
35 48 41 26 61 10 15 28
58 1 36 39 32 27 18 7
37 34 31 60 9 62 29 16
e 59 38 33 30 17 8 63

Hints

Preliminary Part useful list functions: .contains(..) checks whether an ele-
mentisinalist, . flatten turns alist of lists into just alist, _: :_ puts an element
on the head of the list, .head gives you the first element of a list (make sure the
list is not Nil); a useful option function: .isDefined returns true, if an option
is Some (. .); anonymous functions can be constructed using (x:Int) => ...,
this function takes an Int as an argument.

Core Part a useful list function: .sortBy sorts a list according to a component
given by the function; a function can be tested to be tail-recursive by annotation

@tailrec, which is made available by importing scala.annotation.tailrec.

Preliminary Part (4 Marks)

You are asked to implement the knight’s tour problem such that the dimension
of the board can be changed. Therefore most functions will take the dimension
of the board as an argument. The fun with this problem is that even for small
chessboard dimensions it has already an incredibly large search space —finding
a tour is like finding a needle in a haystack. In the first task we want to see
how far we get with exhaustively exploring the complete search space for small
chessboards.

Let us first fix the basic datastructures for the implementation. The board di-
mension is an integer. A position (or field) on the chessboard is a pair of integers,
like (0,0). A path is a list of positions. The first (or Oth move) in a path is the
last element in this list; and the last move in the path is the first element. For
example the path for the 5 x 5 chessboard above is represented by

List((8, 4), (2, 3), ..., (3, 2), (4, 4))
N—— e — ~—— N——
24 23 1 0

Suppose the dimension of a chessboard is 7, then a path is a tour if the length
of the path is n X n, each element occurs only once in the path, and each move
follows the rules of how a knight moves (see above for the rules).

Tasks (file knightl.scala)

1) Implement an is_legal function that takes a dimension, a path and a
P p
position as arguments and tests whether the position is inside the board
and not yet element in the path. [1 Mark]

(2) Implement a 1legal_moves function that calculates for a position all legal
onward moves. If the onward moves are placed on a circle, you should
produce them starting from “12-o’clock” following in clockwise order.
For example on an 8 x 8 board for a knight at position (2,2) and other-
wise empty board, the legal-moves function should produce the onward
positions in this order:

LiSt((3)4)) (4J3)J (4)1)J (319)1 (1,@), (0)1)J (9,3)) (1J4))
If the board is not empty, then maybe some of the moves need to be filtered
out from this list. For a knight on field (7,7) and an empty board, the legal
moves are

List((6,5), (5,6))

[1 Mark]

(3) Implement two recursive functions (count_tours and enum_tours). They
each take a dimension and a path as arguments. They exhaustively search
for tours starting from the given path. The first function counts all possi-
ble tours (there can be none for certain board sizes) and the second collects
all tours in a list of paths. These functions will be called with a path con-
taining a single position —the starting field. They are expected to extend
this path so as to find all tours starting from the given position.

[2 Marks]

Test data: For the marking, the functions in (3) will be called with board sizes
up to 5 x 5. If you search for tours on a 5 x 5 board starting only from field
(0,0), there are 304 of tours. If you try out every field of a 5 x 5-board as a
starting field and add up all tours, you obtain 1728. A 6 x 6 board is already
too large to be searched exhaustively.?

Core Part (6 Marks)
Tasks (file knightl.scala cont.)

(4) Implement a first-function. This function takes a list of positions and
a function f as arguments; f is the name we give to this argument). The
function f takes a position as argument and produces an optional path.
So f’s typeis Pos => Option[Path]. The idea behind the first-function
is as follows:

first(Nil, f) = None

first(x::xs, f) def {f(x) if f(x) # None

first(xs, f) otherwise

That is, we want to find the first position where the result of f is not None,
if there is one. Note that ‘inside’ first, you do not (need to) know any-
thing about the argument f exceptits type, namely Pos => Option[Path].
If you want to find out what the result of f is on a particular argument,
say x, you can just write f(x). There is one additional point however you
should take into account when implementing first: you will need to cal-
culate what the result of f(x) is; your code should do this only once and
for as few elements in the list as possible! Do not calculate f(x) for all
elements and then see which is the first Some.

[1 Mark]

(5) Implement a first_tour function that uses the first-function from (4),
and searches recursively for single tour. As there might not be such a tour
atall, the first_tour function needs to return a value of type Option[Path].

[1 Mark]

2For your interest, the number of tours on 6 X 6, 7 x 7 and 8 x 8 are 6637920, 165575218320,
19591828170979904, respectively.

Testing: The first_tour function will be called with board sizes of up to 8 x 8.

As you should have seen in the earlier parts, a naive search for tours beyond
8 x 8 boards and also searching for closed tours even on small boards takes
too much time. There is a heuristics, called Warnsdorf’s Rule that can speed
up finding a tour. This heuristics states that a knight is moved so that it always
proceeds to the field from which the knight will have the fewest onward moves.
For example for a knight on field (1, 3), the field (0,1) has the fewest possible
onward moves, namely 2.

0 1 2 3 4 5 6 7

Warnsdorf’s Rule states that the moves on the board above should be tried in
the order

(0,1),(0,5),(2,1),(2,5),(3,4),(3,2)

Whenever there are ties, the corresponding onward moves can be in any order.
When calculating the number of onward moves for each field, we do not count
moves that revisit any field already visited.

Tasks (file knight2.scala)

(6) Write a function ordered_moves that calculates a list of onward moves
like in (2) but orders them according to Warnsdorf’s Rule. That means
moves with the fewest legal onward moves should come first (in order to
be tried out first). [1 Mark]

(7) Implement a first_closed_tour_heuristics function that searches for
a single closed tour on a 6 x 6 board. It should try out onward moves
according to the ordered_moves function from (6). It is more likely to
find a solution when started in the middle of the board (that is position
(dimension /2, dimension /2)). [1 Mark]

(8) Implement a first_tour_heuristics function for boards up to 30 x 30.
It is the same function as in (7) but searches for tours (not just closed

tours). It might be called with any field on the board as starting field.
[1 Mark]

Task (file knight3.scala)

(9) Implement a function tour_on_mega_board which is the same function
as in (8), but should be able to deal with boards up to 70 x 70 within 30
seconds (on my laptop). This will be tested by starting from field (0,0).
You have to be careful to write a tail-recursive function otherwise you
will get problems with stack-overflows. Please observe the requirements
about the submissions: no tricks involving .par.

The timelimit of 30 seconds is with respect to the laptop on which the
marking will happen. You can roughly estimate how well your imple-
mentation performs by running knight3.jar on your computer. For ex-
ample the reference implementation shows on my laptop:

$ scala -cp knight3.jar
scala> CW8c.tour_on_mega_board(70, List((@, 0)))
Time needed: 9.484 secs.

...<<long list>>...

[1 Mark]

