
Coursework 6 (Scala)
This coursework is about Scala and is worth 10%. The first and second part are
due on 16 November at 11pm, and the third part on 21 December at 11pm. You
are asked to implement three programs about list processing and recursion.
The third part is more advanced and might include material you have not yet
seen in the first lecture.

Important:

• Make sure the files you submit can be processed by just calling
scala <<filename.scala>> on the commandline.

• Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot use ListBuffers, for example.

• Do not use return in your code! It has a different meaning in Scala, than
in Java.

• Do not use var! This declares a mutable variable. Only use val!

• Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
360 seconds on my laptop.

Disclaimer
It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Part 1 (3 Marks)
This part is about recursion. You are asked to implement a Scala program that
tests examples of the 3n + 1-conjecture, also called Collaĵ conjecture. This con-
jecture can be described as follows: Start with any positive number n greater
than 0:

• If n is even, divide it by 2 to obtain n/2.

• If n is odd, multiply it by 3 and add 1 to obtain 3n + 1.

• Repeat this process and you will always end up with 1.

1

For example if you start with 6, respectively 9, you obtain the series

6, 3, 10, 5, 16, 8, 4, 2, 1 (= 9 steps)
9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 (= 20 steps)

As you can see, the numbers go up and down like a roller-coaster, but curi-
ously they seem to always terminate in 1. The conjecture is that this will always
happen for every number greater than 0.1

Tasks (file collaĵ.scala):

(1) You are asked to implement a recursive function that calculates the num-
ber of steps needed until a series ends with 1. In case of starting with 6,
it takes 9 steps and in case of starting with 9, it takes 20 (see above). In
order to try out this function with large numbers, you should use Long
as argument type, instead of Int. You can assume this function will be
called with numbers between 1 and 1 Million. [2 Marks]

(2) Write a second function that takes an upper bound as argument and cal-
culates the steps for all numbers in the range from 1 up to this bound.
It returns the maximum number of steps and the corresponding number
that needs that many steps. More precisely it returns a pair where the
first component is the number of steps and the second is the correspond-
ing number. [1 Mark]

Test Data: Some test ranges are:

• 1 to 10 where 9 takes 20 steps

• 1 to 100 where 97 takes 119 steps,

• 1 to 1,000 where 871 takes 179 steps,

• 1 to 10,000 where 6, 171 takes 262 steps,

• 1 to 100,000 where 77, 031 takes 351 steps,

• 1 to 1 Million where 837, 799 takes 525 steps

Hints: useful math operators: % for modulo; useful functions: (1 to 10) for
ranges, .toInt, .toList for conversions, List(...).max for the maximum of
a list, List(...).indexOf(...) for the first index of a value in a list.

1While it is relatively easy to test this conjecture with particular numbers, it is an interesting
open problem to prove that the conjecture is true for all numbers (> 0). Paul Erdös, a famous
mathematician you might have hard about, said about this conjecture: “Mathematics may not be
ready for such problems.” and also offered a $500 cash prize for its solution. Jeffrey Lagarias,
another mathematician, claimed that based only on known information about this problem, “this
is an extraordinarily difficult problem, completely out of reach of present daymathematics.” There
is also a xkcd cartoon about this conjecture (click here). If you are able to solve this conjecture, you
will definitely get famous.

2

https://xkcd.com/710/
https://xkcd.com/710/

Part 2 (3 Marks)
This part is about web-scraping and list-processing in Scala. It uses online data
about the per-capita alcohol consumption for each country (per year?), and a
file with the data about the population size of each country. From this data
you are supposed to estimate how many litres of pure alcohol are consumed
worldwide.

Tasks (file alcohol.scala):

(1) Write a function that given an URL requests a comma-separated value
(CSV) list. We are interested in the list from the following URL

https://raw.githubusercontent.com/fivethirtyeight/data/
master/alcohol-consumption/drinks.csv

Your function should take a string (the URL) as input, and produce a list
of strings as output, where each string is one line in the corresponding
CSV-list. This list should contain 194 lines.

Write another function that can read the file population.csv from disk
(the file is distributed with the coursework). This function should take a
string as argument, the file name, and again return a list of strings cor-
responding to each entry in the CSV-list. For population.csv, this list
should contain 216 lines. [1 Mark]

(2) Unfortunately, the CSV-lists contain a lot of “junk” andwe need to extract
the data that interests us. From the header of the alcohol list, you can see
there are 5 columns

country (name),
beer_servings,
spirit_servings,
wine_servings,
total_litres_of_pure_alcohol

Write a function that extracts the data from the first column, the country
name, and the data from the fifth column (converted into a Double). For
this go through each line of the CSV-list (except the first line), use the
split(",") function to divide each line into an array of 5 elements. Keep
the data from the first and fifth element in these arrays.

Write another function that processes the population size list. This is al-
ready of the form country name and population size.2 Again, split the
strings according to the commas. However, this time generate a Map from
country names to population sizes. [1 Mark]

2Your friendly lecturer already did the messy processing for you from theWorldbank database,
see https://github.com/datasets/population/tree/master/data.

3

https://raw.githubusercontent.com/fivethirtyeight/data/master/alcohol-consumption/drinks.csv
https://raw.githubusercontent.com/fivethirtyeight/data/master/alcohol-consumption/drinks.csv
https://github.com/datasets/population/tree/master/data

(3) In (2) you generated the data about the alcohol consumption per capita
for each country, and also the population size for each country. From
this generate next a sorted(!) list of the overall alcohol consumption for
each country. The list should be sorted from highest alcohol consump-
tion to lowest. The difficulty is that the data is scrapped off from “ran-
dom” sources on the Internet and annoyingly the spelling of some coun-
try names does not always agree in the lists. For example the alcohol
list contains Bosnia-Herzegovina, while the population writes this coun-
try as Bosnia and Herzegovina. In your sorted overall list include only
countries from the alcohol list, whose exact country name is also in the
population size list. This means you can ignore countries like Bosnia-
Herzegovina from the overall alcohol consumption. There are 177 coun-
tries where the names agree. The UK is ranked 10th on this list with con-
suming 671,976,864 Litres of pure alcohol each year.

Finally, write another function that takes an integer, say n, as argument.
You can assume this integer is between 0 and 177. The function should
use the sorted list from above. It returns a triple, where the first compo-
nent is the sum of the alcohol consumption in all countries (on the list);
the second component is the sum of the n-highest alcohol consumers on
the list; and the third component is the percentage the n-highest alcohol
consumers feast on with respect to the the world consumption. You will
see that according to our data, 164 countries (out of 177) gobble up 100%
of the world alcohol consumption. [1 Mark]

Hints: useful list functions: .drop(n), .take(n) for dropping or taking some
elements in a list, .getLines for separating lines in a string; .sortBy(_._2)
sorts a list of pairs according to the second elements in the pairs—the sorting
is done from smallest to highest; useful Map functions: .toMap converts a list of
pairs into a Map, .isDefinedAt(k) tests whether the map is defined at that key,
that is would produce a result when called with this key.

4

Advanced Part 3 (3 Marks)
A purely fictional character named Mr T. Drumb inherited in 1978 approxi-
mately 200 Million Dollar from his father. Mr Drumb prides himself to be a
brilliant business man because nowadays it is estimated he is 3 Billion Dollar
worth (one is not sure, of course, because Mr Drumb refuses to make his tax
records public).

Since the question about Mr Drumb’s business acumen remains open, let’s
do a quick back-of-the-envelope calculation in Scala whether his claim has any
merit. Let’s suppose we are given $100 in 1978 and we follow a really dumb
investment strategy, namely:

• We blindly choose a portfolio of stocks, say some Blue-Chip stocks or
some Real Estate stocks.

• If some of the stocks in our portfolio are traded in January of a year, we
invest our money in equal amounts in each of these stocks. For example
if we have $100 and there are four stocks that are traded in our portfolio,
we buy $25 worth of stocks from each.

• Next year in January, we look how our stocks did, liquidate everything,
and re-invest our (hopefully) increased money in again the stocks from
our portfolio (there might be more stocks available, if companies from
our portfolio got listed in that year, or less if some companies went bust
or de-listed).

• We do this for 38 years until January 2017 and check what would have
become out of our $100.

Tasks (file drumb.scala):

(1.a) Write a function that queries the Yahoo financial data service and obtains
the first trade (adjusted close price) of a stock symbol and a year. A prob-
lem is that normally a stock exchange is not open on 1st of January, but
depending on the day of the week on a later day (maybe 3rd or 4th). The
easiest way to solve this problem is to obtain the whole January data for a
stock symbol as CSV-list and then select the earliest entry in this list. For
this you can specify a date range with the Yahoo service. For example if
you want to obtain all January data for Google in 2000, you can form the
query:

http://ichart.yahoo.com/table.csv?s=GOOG&a=0&b=1&c=2000&d=1&e=1&f=2000

For other companies and years, you need to change the stock symbol
(GOOG) and the year 2000 (in the c and f argument of the query). Such
a request might fail, if the company does not exist during this period.
For example, if you query for Google in January of 1980, then clearly
Google did not exists yet. Therefore you are asked to return a trade price
as Option[Double].

5

http://ichart.yahoo.com/table.csv?s=GOOG&a=0&b=1&c=2000&d=1&e=1&f=2000

(1.b) Write a function that takes a portfolio (a list of stock symbols), a years
range and gets all the first trading prices for each year. You should or-
ganise this as a list of lists of Option[Double]’s. The inner lists are for
all stock symbols from the portfolio and the outer list for the years. For
example for Google andApple in years 2010 (first line), 2011 (second line)
and 2012 (third line) you obtain:

List(List(Some(313.062468), Some(27.847252)),
List(Some(301.873641), Some(42.884065)),
List(Some(332.373186), Some(53.509768)))

[1 Mark]

(2.a) Write a function that calculates the change factor (delta) for how a stock
price has changed from one year to the next. This is only well-defined, if
the corresponding company has been traded in both years. In this case
you can calculate

pricenew − priceold
priceold

(2.b) Write a function that calculates all change factors (deltas) for the prices
we obtained under Task 1. For the running example of Google and Apple
for the years 2010 to 2012 you should obtain 4 change factors:

List(List(Some(-0.03573991820699504), Some(0.5399747522663995))
List(Some(0.10103414428290529), Some(0.24777742035415723)))

That means Google did a bit badly in 2010, while Apple did very well.
Both did OK in 2011. [1 Mark]

(3.a) Write a function that calculates the “yield”, or balance, for one year for
our portfolio. This function takes the change factors, the starting balance
and the year as arguments. If no company from our portfolio existed in
that year, the balance is unchanged. Otherwise we invest in each existing
company an equal amount of our balance. Using the change factors com-
puted under Task 2, calculate the new balance. Say we had $100 in 2010,
we would have received in our running example

$50 * -0.03573991820699504 + $50 * 0.5399747522663995
= $25.211741702970222

as profit for that year, and our new balance for 2011 is $125 when con-
verted to a Long.

6

(3.b) Write a function that calculates the overall balance for a range of years
where each year the yearly profit is compounded to the new balances and
then re-invested into our portfolio. [1 Mark]

TestData: File drumb.scala contains twoportfolios collected from the S&P 500,
one for blue-chip companies, including Facebook, Amazon and Baidu; and an-
other for listed real-estate companies, whose names I have never heard of. Fol-
lowing the dumb investment strategy from 1978 until 2016 would have turned
a starting balance of $100 into $23,794 for real estate and a whopping $524,609
for blue chips.

Moral: Reflecting on our assumptions, we are over-estimating our yield in
many ways: first, who can know in 1978 about what will turn out to be a blue
chip company. Also, since the portfolios are chosen from the current S&P 500,
they do not include the myriad of companies that went bust or were de-listed
over the years. So where does this leave our fictional character Mr T. Drumb?
Well, given his inheritance, a really dumb investment strategywould have done
equally well, if not much beĴer.

7

