
Coursework 7 (Scala, Knight’s Tour)
This coursework is worth 10%. It is about searching and backtracking. The
first part is due on 23 November at 11pm; the second, more advanced part, is
due on 30 November at 11pm. You are asked to implement Scala programs
that solve various versions of the Knight’s Tour Problem on a chessboard. Note
the second part might include material you have not yet seen in the first two
lectures. Make sure the files you submit can be processed by just calling scala
<<filename.scala>>.

Important: Do not use any mutable data structures in your submissions! They
are not needed. This excludes the use of ListBuffers, for example. Do not use
return in your code! It has a different meaning in Scala, than in Java. Do not
use var! This declares a mutable variable. Feel free to copy any code you need
from files knight1.scala, knight2.scala and knight3.scala. Make sure the
functions you submit are defined on the “top-level” of Scala, not inside a class
or object. Also note that the running time of each part will be restricted to a
maximum of 360 seconds.

Disclaimer
It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Background
The Knight’s Tour Problem is about finding a tour such that the knight visits
every field on an n × n chessboard once. Such a tour is called open tour. For
example on a 5 × 5 chessboard, an open knight’s tour is:

4 zzzzz
3 zzzzz
2 zzzzz
1 zzzzz
0 zzzzz

0 1 2 3 4

24 11 6 17 0
19 16 23 12 7
10 5 18 1 22
15 20 3 8 13
4 9 14 21 2

The tour starts in the right-upper corner, then moves to field (3, 2), then (4, 0)
and so on. There are no knight’s tours on 2 × 2, 3 × 3 and 4 × 4 chessboards,
but for every bigger board there is.

A knight’s tour is called closed, if the last step in the tour is within a knight’s
move to the beginning of the tour. So the above knight’s tour is not closed (it
is open) because the last step on field (0, 4) is not within the reach of the first

1



step on (4, 4). It turns out there is no closed knight’s tour on a 5 × 5 board. But
there are on a 6 × 6 board and on bigger ones, for example

zzzzzz
zzzzzz
zzzzzz
zzzzzz
zzzzzz
zzzzzz

10 5 18 25 16 7
31 26 9 6 19 24
4 11 30 17 8 15
29 32 27 0 23 20
12 3 34 21 14 1
33 28 13 2 35 22

where the 35th move can join up again with the 0th move.
If you cannot remember how a knightmoves in chess, or never played chess,

below are all potential moves indicated for two knights, one on field (2, 2) (blue
moves) and another on (7, 7) (red moves):

7 zzzzzzz2N
6 zzzzzzzz
5 zzzzzzzz
4 zzzzzzzz
3 zzzzzzzz
2 zz2Nzzzzz
1 zzzzzzzz
0 zzzzzzzz

0 1 2 3 4 5 6 7

Part 1 (7 Marks)
You are asked to implement the knight’s tour problem such that the dimension
of the board can be changed. Therefore most functions will take the dimension
of the board as an argument. The fun with this problem is that even for small
chessboard dimensions it has already an incredibly large search space—finding
a tour is like finding a needle in a haystack. In the first task we want to see
how far we get with exhaustively exploring the complete search space for small
chessboards.

Let us first fix the basic datastructures for the implementation. The board di-
mension is an integer (we will never go beyond board sizes of 50 × 50). A posi-
tion (or field) on the chessboard is a pair of integers, like (0, 0). A path is a list
of positions. The first (or 0th move) in a path is the last element in this list; and
the last move in the path is the first element. For example the path for the 5× 5
chessboard above is represented by

2



List((0, 4)︸ ︷︷ ︸
24

, (2, 3)︸ ︷︷ ︸
23

, ..., (3, 2)︸ ︷︷ ︸
1

, (4, 4)︸ ︷︷ ︸
0

)

Suppose the dimension of a chessboard is n, then a path is a tour if the length
of the path is n × n, each element occurs only once in the path, and each move
follows the rules of how a knight moves (see above for the rules).

Tasks (file knight1.scala)

(1a) Implement an is-legal-move function that takes a dimension, a path and
a position as argument and tests whether the position is inside the board
and not yet element in the path. [1 Mark]

(1b) Implement a legal-moves function that calculates for a position all legal
onward moves. If the onward moves are placed on a circle, you should
produce them starting from“12-oclock” following in clockwise order. For
example on an 8 × 8 board for a knight on position (2, 2) and otherwise
empty board, the legal-moves function should produce the onward posi-
tions in this order:

List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))

If the board is not empty, then maybe some of the moves need to be fil-
tered out from this list. For a knight on field (7, 7) and an empty board,
the legal moves are

List((6,5), (5,6))

[1 Mark]

(1c) Implement two recursive functions (count-tours and enum-tours). They
each take a dimension and a path as arguments. They exhaustively search
for open tours starting from the given path. The first function counts all
possible open tours (there can be none for certain board sizes) and the
second collects all open tours in a list of paths. [2 Marks]

Test data: For the marking, the functions in (1c) will be called with board sizes
up to 5 × 5. If you search for open tours on a 5 × 5 board starting only from
field (0, 0), there are 304 of tours. If you try out every field of a 5 × 5-board as
a starting field and add up all open tours, you obtain 1728. A 6 × 6 board is
already too large to be searched exhaustively.1

1For your interest, the number of open tours on 6× 6, 7× 7 and 8× 8 are 6637920, 165575218320,
19591828170979904, respectively.

3



Tasks (file knight2.scala)

(2a) Implement a first-function. This function takes a list of positions and a
function f as arguments. The function f takes a position as argument
and produces an optional path. So f ’s type is Pos => Option[Path]. The
idea behind the first-function is as follows:

first(Nil, f ) def
= None

first(x :: xs, f ) def
=

{
f (x) if f (x) ̸= None
first(xs, f ) otherwise

That is, we want to find the first position where the result of f is not None,
if there is one. Note that you do not (need to) know anything about the
function f except its type, namely Pos => Option[Path]. There is one
additional point however you should take into account when implement-
ing first: you will need to calculate what the result of f (x) is; your code
should do this only once!

[1 Mark]

(2b) Implement a first-tour function that uses the first-function from (2a), and
searches recursively for an open tour. As there might not be such a tour
at all, the first-tour function needs to return an Option[Path].

[2 Marks]

Testing The first tour function will be called with board sizes of up to 8 × 8.

Part 2 (3 Marks)
As you should have seen in Part 1, a naive search for open tours beyond 8 × 8
boards and also searching for closed tours takes too much time. There is a
heuristic (calledWarnsdorf’s rule) that can speed upfinding a tour. This heuris-
tic states that a knight is moved so that it always proceeds to the field from
which the knight will have the fewest onward moves. For example for a knight
on field (1, 3), the field (0, 1) has the fewest possible onward moves, namely 2.

7 zzzzzzzz
6 zzzzzzzz
5 zzzzzzzz
4 zzzzzzzz
3 z2Nzzzzzz
2 zzzzzzzz
1 zzzzzzzz
0 zzzzzzzz

0 1 2 3 4 5 6 7

3 7
7

7
52

4



Warnsdorf’s rule states that the moves on the board above should be tried in
the order

(0, 1), (0, 5), (2, 1), (2, 5), (3, 4), (3, 2)

Whenever there are ties, the corresponding onward moves can be in any order.
When calculating the number of onward moves for each field, we do not count
moves that revisit any field already visited.

Tasks (file knight3.scala)

(3a) Write a function ordered-moves that calculates a list of onwardmoves like
in (1b) but orders them according to the Warnsdorf’s rule. That means
moves with the fewest legal onward moves should come first (in order to
be tried out first). [1 Mark]

(3b) Implement a first-closed-tour-heuristic function that searches for a closed
tour on a 6 × 6 board. It should use the first-function from (2a) and tries
out onward moves according to the ordered-moves function from (3a). It
is more likely to find a solution when started in the middle of the board
(that is position (dimension/2, dimension/2)). [1 Mark]

(3c) Implement a first-tour-heuristic function for boards up to 50 × 50. It is
the same function as in (3b) but searches for open tours. You have to be
careful to write a tail-recursive version of the first-tour-heuristic function
otherwise you will get problems with stack-overflows. [1 Mark]

5


