
Part 10 (Scala)
“If there’s one feature that makes Scala, ‘Scala’,

I would pick implicits.”
— Martin Odersky (creator of the Scala language)

This part is about a small (esoteric) programming language called brainf***.
Actually, wewill implement an interpreter for our own version of this language
called brainf*ck++.

Important

• This part is worth 10% and you need to submit it on 15 January at 4pm.

• Make sure the files you submit can be processed by just calling
scala <<filename.scala>> on the command line.1 Use the template
files provided and do not make any changes to arguments of functions
or to any types. You are free to implement any auxiliary function you
might need.

• Do not leave any test cases running in your code because this might
slow down your program! Comment out test cases before submission,
otherwise you might hit a time‑out.

• Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot create new Arrays or ListBuffers,
for example.

• Do not use return in your code! It has a different meaning in Scala than
in Java. It changes the meaning of your program, and you should never
use it.

• Do not use var! This declares a mutable variable. Only use val!

• Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
30 seconds on my laptop.

Disclaimer

It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

1All major OSes, including Windows, have a command line. So there is no good reason to not
download Scala, install it and run it on your own computer. Just do it!

1

Reference Implementation
As usual, this Scala assignment comes with a reference implementation in form
of two jar‑files. You can download them from KEATS. They allow you to run
any test cases on your own computer. For example you can call Scala on the
command line with the option ‐cp bf.jar and then query any function from
the bf.scala template file. You have to prefix the calls with CW10a and CW10b,
respectively. For example

$ scala ‐cp bf.jar
scala> import CW10a._
scala> run(load_bff("sierpinski.bf")) ; ()

*
* *

* *
* * * *

* *
* * * *

* * * *
* * * * * * * *

* *
* * * *

* * * *
* * * * * * * *

* * * *
* * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

* *
* * * *

* * * *
* * * * * * * *

* * * *
* * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

* * * *
* * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *
* *

2

Part A (6 Marks)
Coming from Java or C++, you might think Scala is a rather esoteric program‑
ming language. But remember, some serious companies have built their busi‑
ness on Scala.2 I claim functional programming is not a fad. And there are far,
far more esoteric languages out there. One is called brainf***. You are asked in
this part to implement an interpreter for a slight extension of this language.

Urban Müller developed the original version of brainf*** in 1993. A close
relative of this language was already introduced in 1964 by Corado Böhm, an
Italian computer pioneer. The main feature of brainf*** is its minimalistic set
of instructions—just 8 instructions in total and all of which are single charac‑
ters. Despite the minimalism, this language has been shown to be Turing com‑
plete…if this doesn’t ring any bell with you: it roughly means that every(!)
algorithm can, in principle, be implemented in brainf***. It just takes a lot of
determination and quite a lot of memory resources.

Some relatively sophisticated sample programs in brainf*** are given in the
file bf.scala, including a brainf*** program for the Sierpinski triangle and the
Mandelbrot set. There seems to be even a dedicated Windows IDE for bf pro‑
grams, though I am not sure whether this is just an elaborate April fools’ joke—
judge yourself:

https://www.microsoft.com/en‐us/p/brainf‐ck/9nblgggzhvq5

As mentioned above, the original brainf*** has 8 single‑character commands.
Our version of bf++ will contain the commands '>', '<', '+', '‐', '.', '[' and
']' from the original, and in addition the commands '@', '*' and '#'. Every
other character is considered a comment.

Our interpreter for bf++ operates on memory cells containing integers. For
this it uses a single memory pointer, called mp, that points at each stage to one
memory cell.

· · · · · ·

mp

memory

This pointer can be moved forward by one memory cell by using the command
'>', and backward by using '<'. The commands '+' and '‐' increase, re‑
spectively decrease, by 1 the content of the memory cell to which the memory
pointer currently points to. The command for output in bf++ is '.' whereby
output works by reading the content of the memory cell to which the memory
pointer points to and printing it out as an ASCII character.3 The commands '['

2https://en.wikipedia.org/wiki/Scala_(programming_language)#Companies
3In the original version of bf, there is also a command for input, but we omit it here. All our

programs will be “autonomous”.

3

https://esolangs.org/wiki/Brainfuck
https://www.microsoft.com/en-us/p/brainf-ck/9nblgggzhvq5
https://en.wikipedia.org/wiki/Scala_(programming_language)#Companies

and ']' are looping constructs. Everything in between '[' and ']' is repeated
until a counter (memory cell) reaches zero. A typical program in brainf*** looks
as follows:

++++++++[>++++[>++>+++>+++>+<<<<‐]>+>+>‐>>+[<]<‐]>>.>‐‐‐.++
+++++..+++.>>.<‐.<.+++.‐‐‐‐‐‐.‐‐‐‐‐‐‐‐.>>+.>++.

This one prints out HelloWorld…obviously ;o)We also add 3 new commands
in the bf++‑version of the bf‑language. The purpose of these commands we
explain later.

Tasks (file bf.scala)

(1) Write a function that takes a filename (a string) as an argument and re‑
quests the corresponding file from disk. It returns the content of the file
as a string. If the file does not exists, the function should return the empty
string. [1 Mark]

(2) Brainf**k++memory is represented by a Map from integers to integers. The
empty memory is represented by Map(), that is nothing is stored in the
memory; Map(0 ‐> 1, 2 ‐> 3) stores 1 at memory location 0, and at 2 it
stores 3. The convention is that if we query the memory at a location that
is not defined in the Map, we return 0. Write a ‘safe‑read’ function, sread,
that takes amemory (a Map) and amemory pointer (an Int) as arguments,
and ‘safely’ reads the corresponding memory location. If the Map is not
defined at the memory pointer, sread returns 0.
Write another function write, which takes a memory, a memory pointer
and an integer value as arguments and updates the Mapwith the value at
the givenmemory location. As usual, the Map is not updated ‘in‑place’ but
a new map is created with the same data, except the new value is stored
at the given memory pointer. [1 Mark]

(3) Write two functions, jumpRight and jumpLeft, that are needed to imple‑
ment the loop constructs in brainf**k++. They take a program (a String)
and a program counter (an Int) as arguments and move right (respec‑
tively left) in the string in order to find the matching opening/closing
bracket. For example, given the following program with the program
counter indicated by an arrow:

‐‐[.
↑
.+>‐‐].>.++

then the matching closing bracket is in 9th position (counting from 0) and
jumpRight is supposed to return the position just after this

‐‐[..+>‐‐].
↑
>.++

4

meaning it jumps to after the loop. Similarly, if you are in 8th position,
then jumpLeft is supposed to jump to just after the opening bracket (that
is jumping to the beginning of the loop):

‐‐[..+>‐‐
↑
].>.++

jumpLeft−→ ‐‐[.
↑
.+>‐‐].>.++

Unfortunately we have to take into account that there might be other
opening and closing brackets on the ‘way’ to find the matching bracket.
For example in the brain*ck++ program

‐‐[.
↑
.[+>]‐‐].>.++

we do not want to return the index for the '‐' in the 9th position, but the
program counter for '.' in 12th position. The easiest to find out whether
a bracket is matched is by using levels (which are the third argument in
jumpLeft and jumpLeft). In case of jumpRight you increase the level by
onewhenever you find an opening bracket and decrease by one for a clos‑
ing bracket. Then in jumpRight you are looking for the closing bracket
on level 0. For jumpLeft you do the opposite. In this way you can find
matching brackets in strings such as

‐‐[.
↑
.[[‐]+>[.]]‐‐].>.++

for which jumpRight should produce the position:

‐‐[..[[‐]+>[.]]‐‐].
↑
>.++

It is also possible that the position returned by jumpRight or jumpLeft
is outside the string in cases where there are no matching brackets. For
example

‐‐[.
↑
.[[‐]+>[.]]‐‐.>.++

jumpRight−→ ‐‐[..[[‐]+>[.]]‐‐>.++
↑

[2 Marks]

(4) Write a recursive function compute that runs a brain*u*k++ program. It
takes a program, a program counter, a memory pointer and a memory
as arguments. If the program counter is outside the program string, the
execution stops and compute returns the memory. If the program counter
is inside the string, it reads the corresponding character and updates the

5

program counter pc, memory pointer mp and memory mem according to
the rules shown in Figure 1. It then calls recursively compute with the
updated data. The most convenient way to implement the brainf**k++
rules in Scala is to use pattern‑matching and to calculate a triple consisting
of the updated pc, mp and mem.
Write another function run that calls compute with a given brainfu*k++
program and memory, and the program counter and memory pointer
set to 0. Like compute, it returns the memory after the execution of the
program finishes. You can test your brainf**k++ interpreter with the Sier‑
pinski triangle or the Hello world programs (they seem to be particularly
useful for debugging purposes), or have a look at

https://esolangs.org/wiki/Brainfuck

for more bf/bf++‑programs and the test cases given in bf.scala.
[2 Marks]

Part B (4 Marks)
I am sure you agree while it is fun to marvel at bf++‑programs, like the Sierpin‑
ski triangle or the Mandelbrot program, being interpreted, it is much more fun
to write a compiler for the bf++‑language.

Tasks (file bfc.scala)

(5) Compilers, in general, attempt to make programs run faster by precom‑
puting as much information as possible before running the program. In
our case we can precompute the addresses where we need to jump at the
beginning and end of loops.
For this write a function jtable that precomputes the “jump table” for a
bf++‑program. This function takes a bf++‑program as an argument and
returns a Map[Int, Int]. The purpose of this Map is to record the infor‑
mation, in cases a pc‑position points to a ’[’ or a ’]’, to which pc‑position
do we need to jump next?
For example for the program

+++++[‐>++++++++++<]>‐‐<+++[‐>>++++++++++
<<]>>++<<‐‐‐‐‐‐‐‐‐‐[+>.>.<+<]

we obtain the Map (note the precise numbers might differ depending on
white spaces etc. in the bf‑program):

Map(69 ‐> 61, 5 ‐> 20, 60 ‐> 70, 27 ‐> 44, 43 ‐> 28, 19 ‐> 6)

6

https://esolangs.org/wiki/Brainfuck

'>' • pc+ 1
• mp+ 1
• mem unchanged

'<' • pc+ 1
• mp− 1
• mem unchanged

'+' • pc+ 1
• mp unchanged
• mem updated with mp ‐> mem(mp) + 1

'‐' • pc+ 1
• mp unchanged
• mem updated with mp ‐> mem(mp) ‐ 1

'.' • pc+ 1
• mp and mem unchanged
• print out mem(mp) as a character

'[' if mem(mp) == 0 then
• pc = jumpRight(prog, pc + 1, 0)
• mp and mem unchanged

otherwise if mem(mp) != 0 then
• pc+ 1
• mp and mem unchanged

']' if mem(mp) != 0 then
• pc = jumpLeft(prog, pc ‐ 1, 0)
• mp and mem unchanged

otherwise if mem(mp) == 0 then
• pc+ 1
• mp and mem unchanged

'*' • pc+ 1
• mp unchanged
• mem updated with mp ‐> mem(mp) * mem(mp ‐ 1)
this multiplies the content of the memory cells at mp and mp ‐ 1
and stores the result at mp

'@' • pc+ 1
• mp unchanged
• mem updated with mem(mp) ‐> mem(mp ‐ 1)
this updates the memory cell having the index stored at mem(mp),
with the value stored at mem(mp ‐ 1),

'#' • pc+ 1
• mp and mem unchanged
• print out mem(mp) as a number

any
other
char

• pc+ 1
• mp and mem unchanged

Figure 1: The rules for how commands in the brainf***++ language update the
program counter pc, the memory pointer mp and the memory mem.

7

This Map states that for the ’[’ on position 5, we need to jump to posi‑
tion 20, which is just after the corresponding ’]’. Similarly, for the ’]’ on
position 19, we need to jump to position 6, which is just after the ’[’ on
position 5, and so on. The idea is to not calculate this information each
time we hit a bracket, but just look up this information in the jtable.
Then adapt the compute and run functions from Part 1 in order to take
advantage of the information stored in the jtable. This means whenever
jumpLeft and jumpRight was called previously, you should look up the
jump address in the jtable. Feel free to reuse the function jumpLeft and
jumpRight for calculating the jtable. [1 Mark]

(6) Compilers try to eliminate any “dead” code that could slow down pro‑
grams and also perform what is often called peephole optimisations.4 For
the latter consider that it is difficult for compilers to comprehend what
is intended with whole programs, but they are very good at finding out
what small snippets of code do, and then try to generate faster code for
such snippets.
In our case, dead code is everything that is not a bf++‑command. There‑
fore write a function optimisewhich deletes such dead code from a bf++‑
program. Moreover this function should replace every substring of the
form [‐] by a new command 0. The idea is that the loop [‐] just resets the
memory at the current location to 0. It is more efficient to do this in a sin‑
gle step, rather than stepwise in a loop as in the original bf++‑programs.
In the extended compute3 and run3 functions you should implement this
command by writing 0 to mem(mp), that is use write(mem, mp, 0) as the
rule for the command 0. The easiest way to modify a string in this way
is to use the regular expression """[^<>+‐.\[\]@#*]""", which recog‑
nises everything that is not a bf++‑command. Similarly, the regular ex‑
pression """\[‐\]""" finds all occurrences of [‐]. By using the Scala
method .replaceAll you can replace substrings with new strings.

[1 Mark]

(7) Finally, real compilers try to take advantage of modern CPUswhich often
provide complex operations in hardware that can combine many smaller
instructions into a single faster instruction.
In our case we can optimise the several single increments performed at
a memory cell, for example ++++, by a single “increment by 4”. For this
optimisationwe just have tomake sure these single increments are all next
to each other. Similar optimisations should apply for the bf‑commands
‐, < and >, which can all be replaced by extended versions that take the
amount of the increment (decrement) into account. We will do this by
introducing two‑character bf++‑commands. For example

4https://en.wikipedia.org/wiki/Peephole_optimization

8

https://en.wikipedia.org/wiki/Peephole_optimization

original bf‑cmds replacement
+ +A
++ +B
+++ +C
… …
+++....++ +Z

(these are 26 +’s)

If there are more than 26 +’s in a row, thenmore than one “two‑character”
bf‑commands need to be generated (the idea is that more than 26 copies
of a single bf++‑command in a row is a rare occurrence in actual bf++‑
programs). Similar replacements apply for ‐, < and >, but all other bf++‑
commands should be unaffected by this change.
For this write a function combine which replaces sequences of repeated
increment and decrement commands by appropriate two‑character com‑
mands. In the functions compute4 and run4, the “combine” and the op‑
timisation from (6) should be performed. Make sure that when a two‑
character bf++‑command is encountered youneed to increase the pc‑counter
by two in order to progress to the next command. For example

combine(optimise(load_bff("benchmark.bf")))

generates the improved program

>A+B[<A+M>A‐A]<A[[…

for the original benchmark program

>++[<+++++++++++++>‐]<[[…

As you can see, the compiler bets on saving a lot of time on the +B and
+M steps so that the optimisations is worthwhile overall (of course for the
>A’s and so on, the compiler incurs a penalty). Luckily, after you have per‑
formed all optimisations in (5) ‑ (7), you can expect that the benchmark.bf
program runs four to five times faster. You can also test whether your
compiler produces the correct result by testing for example

run(load_bff("sierpinski.bf")) == run4(load_bff("sierpinski.bf"))

which should return true for all the different compiler stages.
[2 Marks]

9

