A Crash-Course in Scala

"Scala — <u>S</u>lowly <u>c</u>ompiled <u>a</u>cademic <u>la</u>nguage" — a joke(?) found on Twitter

Scala is a programming language that combines functional and object-oriented programming-styles. It has received quite a bit of attention in the last five or so years. One reason for this attention is that, like the Java programming language, Scala compiles to the Java Virtual Machine (JVM) and therefore Scala programs can run under MacOSX, Linux and Windows. Because of this it has also access to the myriads of Java libraries. Unlike Java, however, Scala often allows programmers to write very concise and elegant code. Some therefore say "Scala is the better Java".

A number of companies—the Guardian, Twitter, Coursera, FourSquare, Netflix, LinkedIn to name a few—either use Scala exclusively in production code, or at least to some substantial degree. Scala seems also useful in job-interviews (especially in data science) according to this anecdotal report

http://techcrunch.com/2016/06/14/scala-is-the-new-golden-child

The official Scala compiler can be downloaded from

http://www.scala-lang.org

I found a convenient IDE for writing Scala programs is Microsoft's *Visual Studio Code* (VS Code) which runs under MacOSX, Linux and obviously Windows. It can be downloaded for free from

https://code.visualstudio.com

and should already come pre-installed in the Department (together with the Scala compiler). VS Code is far from perfect, however it includes a *Marketplace* from which a multitude of extensions can be downloaded that make editing and running Scala code a little easier (see Figure 1 for my setup).

What I like most about VS Code is that it provides easy access to the Scala REPL. But if you prefer another editor for coding, it is also painless to work with Scala completely on the command line (as you might have done with g++ in the earlier part of PEP). For the lazybones among us, there is even an online editor and environment for developing and running Scala programs called *ScalaFiddle*, which requires zero setup (assuming you have a browser handy). You can access it from:

[©] Christian Urban, King's College London, 2017, 2018

¹There are also experimental backends of Scala for producing code under Android (http://scala-android.org); for generating JavaScript code to build browser applications (https://www.scala-js.org); and there is work under way to have a native Scala compiler generating X86-code (http://www.scala-native.org).

²from https://www.slideshare.net/maximnovak/joy-of-scala

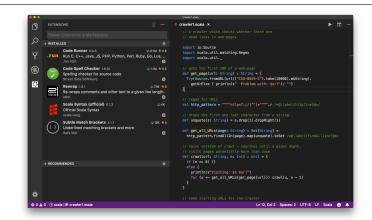


Figure 1: My personal installation of VS Code includes the following packages from Marketplace: Scala Syntax (official), Code Runner, Code Spell Checker, Rewrap and Subtle Match Brackets. I have also bound the keys Ctrl Ret to the action "Run-Selected-Text-In-Active-Terminal" in order to quickly evaluate small code snippets in the Scala REPL.

https://scalafiddle.io

Scala can be used with the heavy-duty IDEs Eclipse and IntelliJ. A ready-made Scala bundle for Eclipse is available from

http://scala-ide.org/download/sdk.html

Also IntelliJ includes plugins for Scala. **BUT**, I do **not** recommend the usage of either Eclipse or IntelliJ for PEP: these IDEs seem to make your life harder, rather than easier, for the small programs we will write in this module. They are really meant to be used when you have a million-lines codebase, rather than our "toy-programs"...for example why on earth am I required to create a completely new project with several subdirectories when I just want to try out 20-lines of Scala code? Your mileage may vary though. ;o)

Why Functional Programming?

Before we go on, let me explain a bit more why we want to inflict upon you another programming language. You hopefully have mastered Java and C++...the world should be your oyster, no? Well, it is not that easy. We do require Scala in PEP, but actually we do not religiously care whether you learn Scala—after all it is just a programming language (albeit a nifty one IMHO). What we do care about is that you learn about *functional programming*. Scala is just the vehicle for that. Still, you need to learn Scala well enough to get good marks in PEP,

but functional programming could equally be taught with Haskell, F#, SML, Ocaml, Kotlin, Clojure, Scheme, Elm and many other functional programming languages.

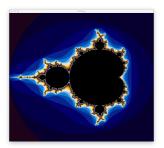
Very likely writing programs in a functional programming language is quite different from what you are used to in your study so far. It might even be totally alien to you. The reason is that functional programming seems to go against the core principles of *imperative programming* (which is what you do in Java and C++ for example). The main idea of imperative programming is that you have some form of "state" in your program and you continuously change this state by issuing some commands (e.g. updating a field in an array or object, adding one to a variable and so on). The classic example for this style of programming are for-loops, for example

```
for (int i = 10; i < 20; i++) {
    //...Do something interesting with i...
}</pre>
```

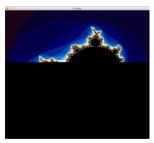
Here the integer variable i embodies the state, which is first set to 10 and then increased by one in each loop-iteration until it reaches 20 at which point the loop exits. When this code is compiled and actually runs, there will be some dedicated space reserved for i in memory. This space of typically 32 bits contains i's current value...10 at the beginning, and then the content will be updated by, or overwritten with, some new content in every iteration. The main point here is that this kind of updating, or manipulating, memory is 25.806...or THE ROOT OF ALL EVIL!!

...Well, it is perfectly benign if you have a sequential program that gets run instruction by instruction...nicely one after another. This kind of running code uses a single core of your CPU and goes as fast as your CPU frequency, also called clock-speed, allows. The problem is that this clock-speed has not much increased over the past decade and no dramatic increases are predicted for any time soon. So you are a bit stuck, unlike previous generations of developers who could rely upon the fact that every 2 years or so their code would run twice as fast (in ideal circumstances) because the clock-speed of their CPUs got twice as fast. This unfortunately does not happen any more nowadays. To get you out of this dreadful situation, CPU producers pile more and more cores into CPUs in order to make them more powerful and potentially make software faster. The task for you as developer is to take somehow advantage of these cores by running as much of your code as possible in parallel on as many cores you have available (typically 4 in modern laptops and sometimes much more

on high-end machines). In this situation, *mutable* variables like i above are evil, or at least a major nuisance: Because if you want to distribute some of the loop-iterations over the cores that are currently idle in your system, you need to be extremely careful about who can read and overwrite the variable i. Especially the writing operation is critical because you do not want that conflicting writes mess about with i. Take my word: an untold amount of misery has arisen from this problem. The catch is that if you try to solve this problem in C++ or Java, and be as defensive as possible about reads and writes to i, then you need to synchronise access to it. The result is that your program more often than not waits more than it runs, thereby defeating the point of trying to run the program in parallel in the first place. If you are less defensive, then usually all hell breaks loose by seemingly obtaining random results. And forget the idea of being able to debug such code.

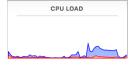

The central idea of functional programming is to eliminate any state from programs—or at least from the "interesting bits". Because then it is easy to parallelize the resulting programs: if you do not have any state, then once created, all memory content stays unchanged and reads to such memory are absolutely safe without the need of any synchronisation. An example is given in Figure 2 where in the absence of the annoying state, Scala makes it very easy to calculate the Mandelbrot set on as many cores of your CPU as possible. Why is it so easy in this example? Because each pixel in the Mandelbrot set can be calculated independently and the calculation does not need to update any variable. It is so easy in fact that going from the sequential version of the Mandelbrot program to the parallel version can be achieved by adding just eight characters—in two places you have to add .par. Try the same in C++ or Java!

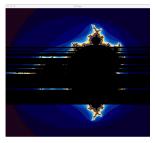
But remember this easy parallelisation of code requires that we have no state in our programs...that is no counters like i in for-loops. You might then ask, how do I write loops without such counters? Well, teaching you that this is possible is one of the main points of the Scala-part in PEP. I can assure you it is possible, but you have to get your head around it. Once you have mastered this, it will be fun to have no state in your programs (a side product is that it much easier to debug state-less code and also more often than not easier to understand). So have fun with Scala!⁴


³If you are of the mistaken belief that nothing nasty can happen to i inside the for-loop, then you need to go back over the C++ material.

⁴If you are still not convinced about the function programming "thing", there are a few more arguments: a lot of research in programming languages happens to take place in functional programming languages. This has resulted in ultra-useful features such as pattern-matching, strong type-systems, lazyness, implicits, algebraic datatypes to name a few. Imperative languages seem to often lag behind in adopting them: I know, for example, that Java will at some point in the future support pattern-matching, which has been used in SML for at least 40(!) years. See http://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html. Also Rust, a C-like programming language that has been developed since 2010 and is gaining quite some interest, borrows many ideas from functional programming from yesteryear.

A Scala program for generating pretty pictures of the Mandelbrot set (https://en.wikipedia.org/wiki/Mandelbrot_set, https://www.youtube.com/watch?v=aSg2Db3jF_4):


sequential version:


```
for (y <- (0 until H)) {
    for (x <- (0 until W)) {

        val c = start +
            (x * d_x + y * d_y * i)
         val iters = iterations(c, max)
        val col =
            if (iters == max) black
            else colours(iters % 16)

        pixel(x, y, col)
    }
    viewer.updateUI()
}</pre>
```


parallel version (on 4 cores):


```
for (y <- (0 until H).par) {
  for (x <- (0 until W).par) {
    val c = start +
        (x * d_x + y * d_y * i)
    val iters = iterations(c, max)
    val col =
        if (iters == max) black
        else colours(iters % 16)

    pixel(x, y, col)
  }
  viewer.updateUI()
}</pre>
```

Figure 2: The main "loops" creating the picture of the Mandelbrot set. The parallel version only differs in .par added to the "ranges" of the x-y-coordinates. As can be seen from the CPU loads: in the sequential versions there is a lower peak for an extended period, while in the parallel version there is a short sharp burst for essentially the same workload.

The Very Basics

One advantage of Scala over Java is that it includes an interpreter (a REPL, or Read-Eval-Print-Loop) with which you can run and test small code snippets without the need of a compiler. This helps a lot with interactively developing programs. It is my preferred way of writing small Scala programs. Once you installed Scala, you can start the interpreter by typing on the command line:

```
$ scala
Welcome to Scala 2.12.6 (Java HotSpot(TM) 64-Bit Server VM, Java 9).
Type in expressions for evaluation. Or try :help.
scala>
```

The precise response may vary depending on the version and platform where you installed Scala. At the Scala prompt you can type things like 2 + 3 Ret and the output will be

```
scala> 2 + 3
res0: Int = 5
```

The answer means that he result of the addition is of type Int and the actual result is 5; res0 is a name that Scala gives automatically to the result. You can reuse this name later on, for example

```
scala> res0 + 4
res1: Int = 9
```

Another classic example you can try out is

```
scala> print("hello world")
hello world
```

Note that in this case there is no result. The reason is that print does not actually produce a result (there is no resX and no type), rather it is a function that causes the *side-effect* of printing out a string. Once you are more familiar with the functional programming-style, you will know what the difference is between a function that returns a result, like addition, and a function that causes a side-effect, like print. We shall come back to this point later, but if you are curious now, the latter kind of functions always has Unit as return type. It is just not printed by Scala.

You can try more examples with the Scala REPL, but feel free to first guess what the result is (not all answers by Scala are obvious):

```
scala> 2 + 2
scala> 1 / 2
scala> 1.0 / 2
scala> 1 / 2.0
scala> 1 / 0
scala> 1 / 0
scala> 1.0 / 0.0
scala> true == false
scala> true && false
scala> 1 > 1.0
scala> i12345".length
scala> List(1,2,1).size
scala> Set(1,2,1).size
```

Please take the Scala REPL seriously: If you want to take advantage of my reference implementation for the assignments, you will need to be able to "play around" with it!

Standalone Scala Apps

If you want to write a stand-alone app in Scala, you can implement an object that is an instance of App, say

```
object Hello extends App {
    println("hello world")
}
```

save it in a file, for example hello-world.scala, and then run the compiler (scalac) and start the runtime environment (scala):

```
$ scalac hello-world.scala
$ scala Hello
hello world
```

Like Java, Scala targets the JVM and consequently Scala programs can also be executed by the bog-standard Java Runtime. This only requires the inclusion of scala-library.jar, which on my computer can be done as follows:

```
$ scalac hello-world.scala
$ java -cp /usr/local/src/scala/lib/scala-library.jar:. Hello
hello world
```

You might need to adapt the path to where you have installed Scala.

Values

In the lectures I will try to avoid as much as possible the term *variables* familiar from other programming languages. The reason is that Scala has *values*, which can be seen as abbreviations of larger expressions. For example

```
scala> val x = 42
x: Int = 42
scala> val y = 3 + 4
y: Int = 7
scala> val z = x / y
z: Int = 6
```

Why the kerfuffle about values? Well, values are *immutable*. You cannot change their value after you defined them. If you try to reassign z above, Scala will yell at you:

```
scala> z = 9
error: reassignment to val
    z = 9
    ^
```

So it would be a bit absurd to call values as variables...you cannot change them; they cannot vary. You might think you can re-assign them like

```
scala> val x = 42
scala> val z = x / 7
scala> val x = 70
scala> println(z)
```

but try to guess what Scala will print out for z? Will it be 6 or 10? A final word about values: Try to stick to the convention that names of values should be lower case, like x, y, foo41 and so on. Upper-case names you should reserve for what is called *constructors*.

Function Definitions

We do functional programming! So defining functions will be our main occupation. As an example, a function named f taking a single argument of type Int can be defined in Scala as follows:

```
def f(x: Int) : String = ...EXPR...
```

This function returns the value resulting from evaluating the expression EXPR (whatever is substituted for this). The result will be of type String. It is a good habit to include this information about the return type always. Simple examples of Scala functions are:

```
def incr(x: Int) : Int = x + 1
def double(x: Int) : Int = x + x
def square(x: Int) : Int = x * x
```

The general scheme for a function is

```
def fname(arg1: ty1, arg2: ty2,..., argn: tyn): rty = {
   BODY
}
```

where each argument requires its type and the result type of the function, rty, should be given. If the body of the function is more complex, then it can be enclosed in braces, like above. If it it is just a simple expression, like x + 1, you can omit the braces. Very often functions are recursive (call themselves) like the venerable factorial function:

```
def fact(n: Int): Int =
  if (n == 0) 1 else n * fact(n - 1)
```

Note that Scala does not have a then-keyword in an if-statement.

Loops, or better the Absence thereof

Coming from Java or C++, you might be surprised that Scala does not really have loops. It has instead, what is in functional programming called, *maps*. To illustrate how they work, let us assume you have a list of numbers from 1 to 8 and want to build the list of squares. The list of numbers from 1 to 8 can be constructed in Scala as follows:

```
scala> (1 to 8).toList
res1: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8)
```

Generating from this list, the list of squares in a programming language such as Java, you would assume the list is given as a kind of array. You would then iterate, or loop, an index over this array and replace each entry in the array by the square. Right? In Scala, and in other functional programming languages, you use maps to achieve the same.

A map essentially takes a function that describes how each element is transformed (for example squared) and a list over which this function should work. There are two forms to express such maps in Scala. The first way is called a *for-comprehension*. Squaring the numbers from 1 to 8 would look as follows:

```
scala> for (n <- (1 to 8).toList) yield n * n
res2: List[Int] = List(1, 4, 9, 16, 25, 36, 49, 64)
```

The important keywords are **for** and **yield**. This for-comprehension roughly states that from the list of numbers we draw ns and compute the result of n * n. As you can see, we specified the list where each n comes from, namely (1 to 8).toList, and how each element needs to be transformed. This can also be expressed in a second way in Scala by using directly maps as follows:

```
scala> (1 to 8).toList.map(n => n * n)
res3 = List(1, 4, 9, 16, 25, 36, 49, 64)
```

In this way, the expression $n \Rightarrow n * n$ stands for the function that calculates the square (this is how the ns are transformed). This expression for functions

might remind you of your lessons about the lambda-calculus where this would have been written as λn . n*n. It might not be obvious, but for-comprehensions are just syntactic sugar: when compiling, Scala translates for-comprehensions into equivalent maps. This even works when for-comprehensions get more complicated (see below).

The very charming feature of Scala is that such maps or for-comprehensions can be written for any kind of data collection, such as lists, sets, vectors, options and so on. For example if we instead compute the reminders modulo 3 of this list, we can write

```
scala> (1 to 8).toList.map(n => n % 3)
res4 = List(1, 2, 0, 1, 2, 0, 1, 2)
```

If we, however, transform the numbers 1 to 8 not into a list, but into a set, and then compute the reminders modulo 3 we obtain

```
scala> (1 to 8).toSet[Int].map(n => n % 3)
res5 = Set(2, 1, 0)
```

This is the correct result for sets, as there are only three equivalence classes of integers modulo 3. Note that in this example we need to "help" Scala to transform the numbers into a set of integers by explicitly annotating the type Int. Since maps and for-comprehensions are just syntactic variants of each other, the latter can also be written as

```
scala> for (n <- (1 to 8).toSet[Int]) yield n % 3
res5 = Set(2, 1, 0)</pre>
```

For-comprehensions can also be nested and the selection of elements can be guarded. For example if we want to pair up the numbers 1 to 4 with the letters a to c, we can write

Or if we want to find all pairs of numbers between 1 and 3 where the sum is an even number, we can write

The **if**-condition in the for-comprehension filters out all pairs where the sum is not even.

While hopefully this all looks reasonable, there is one complication: In the examples above we always wanted to transform one list into another list (e.g. list of squares), or one set into another set (set of numbers into set of reminders modulo 3). What happens if we just want to print out a list of integers? Then

actually the for-comprehension needs to be modified. The reason is that print, you guessed it, does not produce any result, but only produces what is in the functional-programming-lingo called a side-effect. Printing out the list of numbers from 1 to 5 would look as follows

```
scala> for (n <- (1 to 5).toList) print(n)
12345</pre>
```

where you need to omit the keyword **yield**. You can also do more elaborate calculations such as

```
scala> for (n <- (1 to 5).toList) {
  val square_n = n * n
  println(s"$n * $n = $square_n")
}
1 * 1 = 1
2 * 2 = 4
3 * 3 = 9
4 * 4 = 16
5 * 5 = 25</pre>
```

In this code I use a variable assignment (val square_n = ...) and also what is called in Scala a *string interpolation*, written s"...". The latter is for printing out an equation. It allows me to refer to the integer values n and square_n inside a string. This is very convenient for printing out "things".

The corresponding map construction for functions with side-effects is in Scala called foreach. So you could also write

```
scala> (1 to 5).toList.foreach(n => print(n))
12345

or even just
scala> (1 to 5).toList.foreach(print)
12345
```

Again I hope this reminds you a bit of your lambda-calculus lessons, where an explanation is given why both forms produce the same result.

If you want to find out more about maps and functions with side-effects, you can ponder about the response Scala gives if you replace foreach by map in the expression above. Scala will still allow map with side-effect functions, but then reacts with a slightly interesting result.

Types

In most functional programming languages, types play an important role. Scala is such a language. You have already seen built-in types, like Int, Boolean, String and BigInt, but also user-defined ones, like Rexp. Unfortunately, types can be a thorny subject, especially in Scala. For example, why do we need to give the type to toSet[Int], but not to toList? The reason is the power of

Scala, which sometimes means it cannot infer all necessary typing information. At the beginning while getting familiar with Scala, I recommend a "play-it-by-ear-approach" to types. Fully understanding type-systems, especially complicated ones like in Scala, can take a module on their own.⁵

In Scala, types are needed whenever you define an inductive datatype and also whenever you define functions (their arguments and their results need a type). Base types are types that do not take any (type)arguments, for example Int and String. Compound types take one or more arguments, which as seen earlier need to be given in angle-brackets, for example List[Int] or Set[List[String]] or Map[Int, Int].

There are a few special type-constructors that fall outside this pattern. One is for tuples, where the type is written with parentheses. For example

```
(Int, Int, String)
```

is for a triple (a tuple with three components—two integers and a string). Tuples are helpful if you want to define functions with multiple results, say the function returning the quotient and reminder of two numbers. For this you might define:

```
def quo_rem(m: Int, n: Int) : (Int, Int) = (m / n, m % n)
```

Since this function returns a pair of integers, its return type needs to be of type (Int, Int). Incidentally, this is also the input type of this function. Notice this function takes *two* arguments, namely m and n, both of which are integers. They are "packaged" in a pair. Consequently the complete type of quo_rem is

```
(Int, Int) => (Int, Int)
```

Another special type-constructor is for functions, written as the arrow =>. For example, the type Int => String is for a function that takes an integer as input argument and produces a string as result. A function of this type is for instance

```
def mk_string(n: Int) : String = n match {
   case 0 => "zero"
   case 1 => "one"
   case 2 => "two"
   case _ => "many"
}
```

It takes an integer as input argument and returns a string. Unlike other functional programming languages, there is in Scala no easy way to find out the types of existing functions, except by looking into the documentation

```
http://www.scala-lang.org/api/current/
```

⁵Still, such a study can be a rewarding training: If you are in the business of designing new programming languages, you will not be able to turn a blind eye to types. They essentially help programmers to avoid common programming errors and help with maintaining code.

The function arrow can also be iterated, as in Int => String => Boolean. This is the type for a function taking an integer as first argument and a string as second, and the result of the function is a boolean. Though silly, a function of this type would be

```
def chk_string(n: Int)(s: String) : Boolean =
  mk string(n) == s
```

which checks whether the integer n corresponds to the name s given by the function mk_string. Notice the unusual way of specifying the arguments of this function: the arguments are given one after the other, instead of being in a pair (what would be the type of this function then?). This way of specifying the arguments can be useful, for example in situations like this

```
scala> List("one", "two", "three", "many").map(chk_string(2))
res4 = List(false, true, false, false)
scala> List("one", "two", "three", "many").map(chk_string(3))
res5 = List(false, false, false, true)
```

In each case we can give to map a specialised version of chk_string—once specialised to 2 and once to 3. This kind of "specialising" a function is called *partial application*—we have not yet given to this function all arguments it needs, but only some of them.

Coming back to the type Int => String => Boolean. The rule about such function types is that the right-most type specifies what the function returns (a boolean in this case). The types before that specify how many arguments the function expects and what their type is (in this case two arguments, one of type Int and another of type String). Given this rule, what kind of function has type (Int => String) => Boolean? Well, it returns a boolean. More interestingly, though, it only takes a single argument (because of the parentheses). The single argument happens to be another function (taking an integer as input and returning a string). Remember that mk_string is just such a function. So how can we use it? For this define the somewhat silly function apply_3:

```
def apply_3(f: Int => String): Bool = f(3) == "many"

scala> apply_3(mk_string)
res6 = true
```

You might ask: Apart from silly functions like above, what is the point of having functions as input arguments to other functions? In Java there is indeed no need of this kind of feature: at least in the past it did not allow such constructions. I think, the point of Java 8 is to lift this restriction. But in all functional programming languages, including Scala, it is really essential to allow functions as input argument. Above you already seen map and foreach which need this. Consider the functions print and println, which both print out strings, but the latter adds a line break. You can call foreach with either of them and

thus changing how, for example, five numbers are printed.

```
scala> (1 to 5).toList.foreach(print)
12345
scala> (1 to 5).toList.foreach(println)
1
2
3
4
5
```

This is actually one of the main design principles in functional programming. You have generic functions like map and foreach that can traverse data containers, like lists or sets. They then take a function to specify what should be done with each element during the traversal. This requires that the generic traversal functions can cope with any kind of function (not just functions that, for example, take as input an integer and produce a string like above). This means we cannot fix the type of the generic traversal functions, but have to keep them *polymorphic*.⁶

There is one more type constructor that is rather special. It is called Unit. Recall that Boolean has two values, namely true and false. This can be used, for example, to test something and decide whether the test succeeds or not. In contrast the type Unit has only a single value, written (). This seems like a completely useless type and return value for a function, but is actually quite useful. It indicates when the function does not return any result. The purpose of these functions is to cause something being written on the screen or written into a file, for example. This is what is called they cause some effect on the side, namely a new content displayed on the screen or some new data in a file. Scala uses the Unit type to indicate that a function does not have a result, but potentially causes some side-effect. Typical examples are the printing functions, like print.

More TBD.

Coursework

More Info

There is much more to Scala than I can possibly describe in this document. Fortunately there are a number of free books about Scala and of course lots of help online. For example

- http://www.scala-lang.org/docu/files/ScalaByExample.pdf
- http://www.scala-lang.org/docu/files/ScalaTutorial.pdf

⁶Another interesting topic about types, but we omit it here for the sake of brevity.

- https://www.youtube.com/user/ShadowofCatron
- http://docs.scala-lang.org/tutorials
- https://www.scala-exercises.org
- https://twitter.github.io/scala_school

There is also a course at Coursera on Functional Programming Principles in Scala by Martin Odersky, the main developer of the Scala language. And a document that explains Scala for Java programmers

• http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

While I am quite enthusiastic about Scala, I am also happy to admit that it has more than its fair share of faults. The problem seen earlier of having to give an explicit type to toSet, but not toList is one of them. There are also many "deep" ideas about types in Scala, which even to me as seasoned functional programmer are puzzling. Whilst implicits are great, they can also be a source of great headaches, for example consider the code:

```
scala> List (1, 2, 3) contains "your mom"
res1: Boolean = false
```

Rather than returning **false**, this code should throw a typing-error. There are also many limitations Scala inherited from the JVM that can be really annoying. For example a fixed stack size. One can work around this particular limitation, but why does one have to? More such 'puzzles' can be found at

```
http://scalapuzzlers.com and http:
//latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/
```

Even if Scala has been a success in several high-profile companies, there is also a company (Yammer) that first used Scala in their production code, but then moved away from it. Allegedly they did not like the steep learning curve of Scala and also that new versions of Scala often introduced incompatibilities in old code. In the past two months there have also been two forks of the Scala compiler. It needs to be seen what the future brings for Scala.

There are only two kinds of languages: the ones people complain about and the ones nobody uses.

−Bjarne Stroustrup (the inventor of C++)