
PEP Scala (1)
Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides & Code: KEATS

Office Hours: Mondays 12:00 – 14:00
except next week: Tuesday

PEP (Scala) 01, King’s College London – p. 1/19

Why Scala?

PEP (Scala) 01, King’s College London – p. 2/19

... ...

developed since 2004 by Martin Odersky
(he was behind Generic Java which was included in Java
5 …I am using it maybe since 2008?)

Why Scala?
compiles to the JVM
(also JavaScript, native X86 in the works)

integrates seamlessly with Java

combines functional and object-oriented
programming

it is a bit on the “mathematical” side
(no pointers, no null, but expressions)
often one can write very concise and elegant code

alternatives:
Elm, Haskell, Ocaml, F♯, Erlang, ML, Lisp (Racket), …

PEP (Scala) 01, King’s College London – p. 3/19

Java vs Scala
public class Point {

private final int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public int x() { return x; }

public int y() { return y; }
}

class Point(val x: Int, val y: Int)

PEP (Scala) 01, King’s College London – p. 4/19

Java

Scala

First Steps: Scala Tools

I use VS Code and a Scala extension (M’place)

there is a plugin for Eclipse (called Scala IDE)

there is also a plugin for IntelliJ

PEP (Scala) 01, King’s College London – p. 5/19

Why Scala?

Scala, Elm, Haskell, Ocaml, F♯, Erlang, ML, Lisp (Racket), …

PEP (Scala) 01, King’s College London – p. 6/19

Why Functional
Programming?

Scala, Elm, Haskell, Ocaml, F♯, Erlang, ML, Lisp (Racket), …

PEP (Scala) 01, King’s College London – p. 6/19

Why Functional
Programming?

Scala, Elm, Haskell, Ocaml, F♯, Erlang, ML, Lisp (Racket), …

PEP (Scala) 01, King’s College London – p. 6/19

“If you want to see which features will be in
mainstream programming languages tomorrow,
then take a look at functional programming
languages today.”

—Simon Peyton Jones (works at Microsoft)
main developer of the Glasgow Haskell Compiler

Why Functional
Programming?

Scala, Elm, Haskell, Ocaml, F♯, Erlang, ML, Lisp (Racket), …

PEP (Scala) 01, King’s College London – p. 6/19

Immutability

Why bother? or
What is wrong with this?

for (int i = 10; i < 20; i++) {

//...Do something interesting
// with i...

}

PEP (Scala) 01, King’s College London – p. 7/19

1986

1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 8/19

64K RAM, no HD, no monitor, lots of cables

3 days

1986 1988, C

1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 8/19

1986 1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 8/19

1986 1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 8/19

1986 1988, C 1992, Linux

1996

2000

2012?

2017

PEP (Scala) 01, King’s College London – p. 8/19

1986 1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 8/19

1986 1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 8/19

1986 1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 8/19

1986: no Internet
no Amazon
no FB, no mobiles,…

1986 1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 8/19

1986: no Internet
no Amazon
no FB, no mobiles,…

Speedup byMoore’s Law

1986: 3 days 1996: 135 mins
1988: 1.5 days 1998: 67 mins
1990: 18 hs 2000: 33 mins
1992: 9 hs 2002: 16 mins
1994: 4.5 hs ???

Every two years, computers got twice as powerful.

1986 1988, C 1992, Linux

1996

20002012?

2017

PEP (Scala) 01, King’s College London – p. 8/19

1986: no Internet
no Amazon
no FB, no mobiles,…

Seq vs Par

PEP (Scala) 01, King’s College London – p. 9/19

Seq vs Par

PEP (Scala) 01, King’s College London – p. 9/19

in Java or C++

Seq vs Par

PEP (Scala) 01, King’s College London – p. 9/19

In FP: Once a variable is created, it is assigned a value and
then never changed again⇒ no synchronisation

Types
Base types
Int, Long, BigInt, Float, Double
String, Char
Boolean
Compound types
List[Int] lists of Int’s
Set[Double] sets of Double’s
(Int, String) Int-String pair
List[(BigInt, String)] lists of BigInt-String

pairs
List[List[Int]] list of lists of Int’s
Option[Int] options of Int’s

PEP (Scala) 01, King’s College London – p. 10/19

Coursework

Sorry, I might have been a bit wordy:
CW description is 7 pages, but I only needed < 100 loc
for all the CW6.

there is email feedback when pushing code to github

there are jar-files you can use to test my
implementation

we want you to learn FP: no vars, no mutable
data-structures, e.g. no Arrays, no ListBuffer

PEP (Scala) 01, King’s College London – p. 11/19

The Joy of Immutability

If you need to manipulate some data in a list say, then
you make a new list with the updated values, rather
than revise the original list. Easy!

val old_list = List(1, 2, 3, 5)
val new_list = 0 :: old_list

You do not have to be defensive about who can access
the data.
You can look at your code in isolation.

PEP (Scala) 01, King’s College London – p. 12/19

Email: Hate ’val’
Subject: Hate ’val’ 01:00 AM

Hello Mr Urban,

I just wanted to ask, how are we suppose to work with
the completely useless val, that can’t be changed ever?
Why is this rule active at all? I’ve spent 4 hours not
thinking on the coursework, but how to bypass this
annoying rule. What’s the whole point of all these
coursework, when we can’t use everything Scala gives
us?!?

Regards.
«deleted»

PEP (Scala) 01, King’s College London – p. 13/19

Subject: Re: Hate ’val’ 01:02 AM

«my usual rant about fp…
concurrency bla bla… better programs yada»

PS: What are you trying to do where you desperately
want to use var?

PEP (Scala) 01, King’s College London – p. 14/19

PEP (Scala) 01, King’s College London – p. 15/19

Subject: Re: Re: Hate ’val’ 01:04 AM

Right now my is_legal function works fine:

def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {
var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 < 0 || x._2 < 0) {
else { var breakLoop = false

if(path == Nil) { boolReturn = true }
else { for(i <‐ 0 until path.length) {

if(breakLoop == false) {
if(path(i) == x) {

boolReturn = true
breakLoop = true

}
else { boolReturn = false }

} else breakLoop
}

}
boolReturn

}

…but I can’t make it work with
boolReturn being val. What approach
would you recommend in this case,
and is using var in this case justified?

PEP (Scala) 01, King’s College London – p. 15/19

Subject: Re: Re: Hate ’val’ 01:04 AM

Right now my is_legal function works fine:

def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {
var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 < 0 || x._2 < 0) {
else { var breakLoop = false

if(path == Nil) { boolReturn = true }
else { for(i <‐ 0 until path.length) {

if(breakLoop == false) {
if(path(i) == x) {

boolReturn = true
breakLoop = true

}
else { boolReturn = false }

} else breakLoop
}

}
boolReturn

}

…but I can’t make it work with
boolReturn being val. What approach
would you recommend in this case,
and is using var in this case justified?

Me:

PEP (Scala) 01, King’s College London – p. 16/19

Subject: Re: Re: Re: Hate ’val’ 01:06 AM

OK. So you want to make sure that the x-position is not outside the
board....and furthermore you want to make sure that the x-position is
not yet in the path list. How about something like

def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
...<<some board conditions>>... && !path.contains(x)

Does not even contain a val.

(This is all on one line)

PEP (Scala) 01, King’s College London – p. 17/19

Subject: Re: Re: Re: Re: Hate ’val’ 11:02 AM

THANK YOU! You made me change my coding
perspective. Because of you, I figured out the next
one…

PEP (Scala) 01, King’s College London – p. 17/19

Subject: Re: Re: Re: Re: Hate ’val’ 11:02 AM

THANK YOU! You made me change my coding
perspective. Because of you, I figured out the next
one…

Me:

Conclusion
Scala is still under heavy development
(the compiler is terribly slow)

http://www.scala‐lang.org/

it is a rather deep language…i.e. gives you a lot of rope
to shoot yourself

learning functional programming is not easy…when you
have spent all of your career thinking in an imperative
way, it is hard to change

hope you have fun with Scala and the assignments
PEP (Scala) 01, King’s College London – p. 18/19

http://www.scala-lang.org/

Questions?

My Office Hours: Mondays 12 – 14
except next week: Tuesday 12 – 14

PEP (Scala) 01, King’s College London – p. 19/19

