
Replacement Coursework 2 (Automata)
This coursework is worth 10%. It is about deterministic and non-deterministic
finite automata. The coursework is due on ??? March at 5pm. Make sure the
files you submit can be processed by just calling scala <<filename.scala>>.

Important: Do not use any mutable data structures in your submission! They
are not needed. This means you cannot use ListBuffers, for example. Do not
use return in your code! It has a different meaning in Scala, than in Java. Do
not use var! This declares a mutable variable. Make sure the functions you
submit are defined on the “top-level” of Scala, not inside a class or object. Also
note that when marking, the running time will be restricted to a maximum of
360 seconds on my laptop.

Disclaimer
It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Part 1 (Deterministic Finite Automata)
There are many uses for Deterministic Finite Automata (DFAs), for example for
testing whether a string matches a paĴern or not. DFAs consist of some states
(circles) and transitions (edges) between states. For example consider the DFA

Q0start Q1 Q2

a

b

b

a
a

b

has three states (Q0, Q1 and Q2), whereby Q0 is the starting state of the DFA
and Q2 is the accepting state. The laĴer indicated by double lines. In general, a
DFA can have any number of accepting states, but only a single starting state.

Transitions are edges between states labelled with a character. The idea is
that if we are in state Q0, say, and get an a, we can go to state Q1. If we are
in state Q2 and get an a, we can stay in state Q2; if we get a b in Q2, then we
have to go to state Q0. The main point of DFAs is that if we are in a state and
get a character, it is always clear which is the next state—there can only be at
most one. The task of Part 1 is to implement such DFAs in Scala using partial
functions for the transitions.

A string is accepted by a DFA, if we start in the starting state, follow all
transitions according to the string; if we end up in an accepting state, then the

1



string is accepted. If not, the string is not accepted. The technical idea is that
DFAs can be used to accept strings from regular languages.

Tasks

(1) Write a polymorphic function, called share, that decides whether two
sets share some elements (i.e. the intersection is not empty). [1 Mark]

(2) The transitions of DFAs will be implemented as partial functions. These
functions will have the type (state, character)-pair to state, that is their
input will be a (state, character)-pair and they return a state. For example
the transitions of the DFA shown above can be defined as the following
partial function:

val dfa_trans : PartialFunction[(State,Char), State] =
{ case (Q0, 'a') => Q1

case (Q0, 'b') => Q0
case (Q1, 'a') => Q2
case (Q1, 'b') => Q0
case (Q2, 'a') => Q2
case (Q2, 'b') => Q0

}

The main point of partial functions (as opposed to “normal” functions)
is that they do not have to be defined everywhere. For example the tran-
sitions above only mention characters a and b, but leave out any other
characters. Partial functions come with a method isDefinedAt that can
be used to check whether an input produces a result or not. For example

dfa_trans.isDefinedAt((Q0, 'a'))
dfa_trans.isDefinedAt((Q0, 'c'))

gives true in the first case and false in the second. There is also amethod
lift that transformes a partial function into a “normal” function return-
ing an optional value: if the partial function is defined on the input, the
lifted function will return Some; if it is not defined, then None.
Write a function that takes a transition and a (state, character)-pair as ar-
guments and produces an optional state (the state specified by the partial
transition function whenever it is defined; if the transition function is un-
defined, return None). [1 Mark]

(3) Write a function that “lifts” the function in (2) from characters to strings.
That is, write a function that takes a transition, a state and a list of char-
acters as arguments and produces the state generated by following the
transitions for each character in the list. For example if you are in state
Q0 in the DFA above and have the list List(a,a,a,b,b,a), then you need

2



to return the state Q1 (as option since there might not be such a state in
general).

[1 Mark]

(4) DFAs are defined as a triple: (staring state, transitions, set of accepting
states). Write a function accepts that tests whether a string is accepted
by an DFA or not. For this start in the starting state of the DFA, use the
function under (3) to calculate the state after following all transitions ac-
cording to the characters in the string. If the resulting state is an accepting
state, return true; otherwise false.

[1 Mark]

Part 2 (Non-Deterministic Finite Automata)
The main point of DFAs is that for every given state and character there is at
most one next state (one if the transition is defined; none otherwise). However,
this restriction to at most one state can be quite limiting for some applications.1
Non-Deterministic Automata (NFAs) remove this restriction: there can bemore
than one starting state, and given a state and a character there can bemore than
one next state. Consider for example the NFA

R1start

R2start

R3
b

a

c a

where in state R2 if we get an a, we can go to state R1 or R3. If we want to find
out whether anNFA accepts a string, thenwe need to explore both possibilities.
We will do this “exploration” in the tasks below in a breadth-first manner.

The feature of havingmore than one next state inNFAswill be implemented
by having a set of partial transition functions (DFAs had only one). For example
the NFA shown above will be represented by the set of partial functions

val nfa_trans : NTrans = Set(
{ case (R1, 'c') => R2 },
{ case (R1, 'b') => R3 },
{ case (R2, 'a') => R1 },
{ case (R2, 'a') => R3 }

)

The point is that the 3rd element in this set states that in R2 and given an a,
we can go to state R1; and the 4th element, in R2, given an a, we can also go to

1Though there is a curious fact that every (less restricted) NFA can be translated into an “equiv-
alent” DFA, whereby accepting means accepting the same set of strings. However this might in-
crease drastically the number of states in the DFA.

3



state R3. When following transitions from a state, we have to look at all partial
functions in the set and generate the set of all possible next states.

Tasks

(5) Write a function nnextwhich takes a transition set, a state and a character
as arguments, and calculates all possible next states (returned as set).

[1 Mark]

(6) Write a function nnexts which takes a transition set, a set of states and a
character as arguments, and calculates all possible next states that can be
reached from any state in the set. [1 Mark]

(7) Like in (3), write a function nnextss that lifts nnexts from (6) from single
characters to lists of characters. [1 Mark]

(8) NFAs are also defined as a triple: (set of staring states, set of transitions,
set of accepting states). Write a function naccepts that tests whether a
string is accepted by an NFA or not. For this start in all starting states of
the NFA, use the function under (7) to calculate the set of states following
all transitions according to the characters in the string. If the resulting
set of states shares at least a single state with the set of accepting states,
return true; otherwise false. Use the function under (1) in order to test
whether these two sets of states share any states or not. [1 Mark]

(9) Since we explore in functions (6) and (7) all possible next states, we de-
cide whether a string is accepted in a breadth-first manner. (Depth-first
would be to choose one state, follow all next states of this single state;
check whether it leads to an accepting state. If not, we backtrack and
choose another state). The disadvantage of breadth-first search is that at
every step a non-empty set of states are “active”… states that need to be
followed at the same time. Write similar functions as in (7) and (8), but in-
stead of returning states or a boolean, calculate the number of states that
need to be followed in each step. The function max_accept should then
return the maximum of all these numbers.
As a test case, consider again the NFA shown above. At the beginning
the number of active states will be 2 (since there are two starting states,
namely R1 and R2). If we get an a, there will be still 2 active states, namely
R1 and R3 both reachable from R2. There is no transition for a and R1. So
for a string, say, ab which is accepted by the NFA, the maximum number
of active states is 2 (it is not possible that all three states of this NFA are
active at the same time; is it possible that no state is active?). [2 Marks]

4


