Coursework 7 (Scala, Knight’s Tour)

This coursework is worth 10%. It is about searching and backtracking. The first
partis due on 23 November at 11pm; the second, more advanced part, is due on
21 December at 11pm. You are asked to implement Scala programs that solve
various versions of the Knight’s Tour Problem on a chessboard. Note the second
part might include material you have not yet seen in the first two lectures.

Important:

* Make sure the files you submit can be processed by just calling
scala <<filename.scala>> on the commandline.

* Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot use ListBuffers, for example.

* Do not use return in your code! It has a different meaning in Scala, than
in Java.

* Do not use var! This declares a mutable variable. Only use val!

* Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
360 seconds on my laptop: If you calculate a result once, try to avoid to calculate
the result again. Feel free to copy any code you need from files knight1.scala,
knight2.scala and knight3.scala.

Disclaimer

It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Background

The Knight’s Tour Problem is about finding a tour such that the knight visits
every field on an n x n chessboard once. For example on a 5 x 5 chessboard, a
knight’s tour is:




The tour starts in the right-upper corner, then moves to field (3,2), then (4,0)
and so on. There are no knight’s tours on 2 x 2, 3 x 3 and 4 X 4 chessboards,
but for every bigger board there is.

A knight's tour is called closed, if the last step in the tour is within a knight’s
move to the beginning of the tour. So the above knight’s tour is not closed
because the last step on field (0,4) is not within the reach of the first step on
(4,4). It turns out there is no closed knight’s tour on a 5 x 5 board. But there
are on a 6 X 6 board and on bigger ones, for example

where the 35th move can join up again with the Oth move.

If you cannot remember how a knight moves in chess, or never played chess,
below are all potential moves indicated for two knights, one on field (2,2) (blue
moves) and another on (7,7) (red moves):

Part 1 (7 Marks)

You are asked to implement the knight’s tour problem such that the dimension
of the board can be changed. Therefore most functions will take the dimension
of the board as an argument. The fun with this problem is that even for small
chessboard dimensions it has already an incredibly large search space —finding
a tour is like finding a needle in a haystack. In the first task we want to see
how far we get with exhaustively exploring the complete search space for small
chessboards.



Let us first fix the basic datastructures for the implementation. The board di-
mension is an integer (we will never go beyond board sizes of 40 x 40). A posi-
tion (or field) on the chessboard is a pair of integers, like (0,0). A path is a list
of positions. The first (or Oth move) in a path is the last element in this list; and
the last move in the path is the first element. For example the path for the 5 x 5
chessboard above is represented by

List((0, 4, (2, 3), ..., (3, 2), (4, 4))
—— N——— —— N —
24 23 1 0

Suppose the dimension of a chessboard is 7, then a path is a tour if the length
of the path is n X n, each element occurs only once in the path, and each move
follows the rules of how a knight moves (see above for the rules).

Tasks (file knightl.scala)

(1a) Implement an is-legal-move function that takes a dimension, a path and
a position as argument and tests whether the position is inside the board
and not yet element in the path. [1 Mark]

(1b) Implement a legal-moves function that calculates for a position all legal
onward moves. If the onward moves are placed on a circle, you should
produce them starting from “12-o’clock” following in clockwise order.
For example on an 8 x 8 board for a knight on position (2,2) and other-
wise empty board, the legal-moves function should produce the onward
positions in this order:

List((3,4), (4,3), (4,1, (3,0, (1,0), (0,1), (0,3), (1,4))

If the board is not empty, then maybe some of the moves need to be fil-
tered out from this list. For a knight on field (7,7) and an empty board,
the legal moves are

List((6,5), (5,6))

[1 Mark]

(1c) Implement two recursive functions (count-tours and enum-tours). They
each take a dimension and a path as arguments. They exhaustively search
for tours starting from the given path. The first function counts all possi-
ble tours (there can be none for certain board sizes) and the second collects
all tours in a list of paths. [2 Marks]

Test data: For the marking, the functions in (1c) will be called with board sizes
up to 5 x 5. If you search for tours on a 5 X 5 board starting only from field
(0,0), there are 304 of tours. If you try out every field of a 5 x 5-board as a



starting field and add up all tours, you obtain 1728. A 6 x 6 board is already
too large to be searched exhaustively.!

Hints: useful list functions: .contains(..) checks whether an element is in
a list, .flatten turns a list of lists into just a list, _: : _ puts an element on the
head of the list, .head gives you the first element of a list (make sure the list is
not Nil).

Tasks (file knight2.scala)

(2a) Implement a first-function. This function takes a list of positions and a
function f as arguments. The function f takes a position as argument and
produces an optional path. So f’s typeis Pos => Option[Path]. Theidea
behind the first-function is as follows:

firstil, f) % None

o a [f(¥) i f(x) # None
first(xiixs, f) = {ﬁrst(xs,f) otherwise

That is, we want to find the first position where the result of f is not None,
if there is one. Note that you do not (need to) know anything about the
function f except its type, namely Pos => Option[Path]. There is one
additional point however you should take into account when implement-
ing first: you will need to calculate what the result of f(x) is; your code
should do this only once!

[1 Mark]

(2b) Implement a first-tour function that uses the first-function from (2a), and
searches recursively for a tour. As there might not be such a tour at all,
the first-tour function needs to return an Option[Path].

[2 Marks]

Testing: The first tour function will be called with board sizes of up to 8 x 8.

Hints: a useful list function: .filter(..) filters a list according to a boolean
function; a useful option function: .isDefined returns true, if an option is
Some (. .); anonymous functions can be constructed using (x:Int) => ...,
this functions takes an Int as an argument.

1For your interest, the number of tours on 6 x 6, 7 x 7 and 8 x 8 are 6637920, 165575218320,
19591828170979904, respectively.



Part 2 (3 Marks)

As you should have seen in Part 1, a naive search for tours beyond 8 x 8 boards
and also searching for closed tours even on small boards takes too much time.
There is a heuristic, called Warnsdorf’s rule that can speed up finding a tour.
This heuristic states that a knight is moved so that it always proceeds to the
field from which the knight will have the fewest onward moves. For example
for a knight on field (1, 3), the field (0, 1) has the fewest possible onward moves,
namely 2.

o B N W~ 0O N
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Warnsdorf’s rule states that the moves on the board above should be tried in
the order

(0,1),(0,5),(2,1),(2,5),(3,4), (3,2)

Whenever there are ties, the corresponding onward moves can be in any order.
When calculating the number of onward moves for each field, we do not count
moves that revisit any field already visited.

Tasks (file knight3.scala)

(3a) Write a function ordered-moves that calculates a list of onward moves like
in (1b) but orders them according to the Warnsdorf’s rule. That means
moves with the fewest legal onward moves should come first (in order to
be tried out first). [1 Mark]

(3b) Implement a first-closed-tour-heuristic function that searches for a closed
tour on a 6 x 6 board. It should use the first-function from (2a) and tries
out onward moves according to the ordered-moves function from (3a). It
is more likely to find a solution when started in the middle of the board
(that is position (dimension /2, dimension /2)). [1 Mark]

(3¢c) Implement a first-tour-heuristic function for boards up to 40 x 40. It is
the same function as in (3b) but searches for tours (not just closed tours).



You have to be careful to write a tail-recursive version of the first-tour-
heuristic function otherwise you will get problems with stack-overflows.
[1 Mark]

Hints: a useful list function: .sortBy sorts a list according to a component
given by the function; a function can be tested to be tail recursive by annotation
@tailrec, which is made available by importing scala.annotation.tailrec.



