
Coursework 8 (Scala, Regular Expressions
This coursework is worth 10%. It is about regular expressions and paĴern
matching. The first part is due on 30 November at 11pm; the second, more
advanced part, is due on 7 December at 11pm. The second part is not yet
included. For the first part you are asked to implement a regular expression
matcher. Make sure the files you submit can be processed by just calling scala
<<filename.scala>>.

Important: Do not use any mutable data structures in your submissions! They
are not needed. This excluded the use of ListBuffers, for example. Do not use
return in your code! It has a different meaning in Scala, than in Java. Do not
use var! This declares a mutable variable. Make sure the functions you submit
are defined on the “top-level” of Scala, not inside a class or object.

Disclaimer!!!!!!!!
It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Part 1 (6 Marks)
The task is to implement a regular expression matcher based on derivatives of
regular expressions. The implementation can deal with the following regular
expressions, which have been predefined file re.scala:

r ::= 0 cannot match anything
| 1 can only match the empty string
| c can match a character (in this case c)
| r1 + r2 can match a string either with r1 or with r2
| r1 · r2 can match the first part of a string with r1 and

then the second part with r2
| r∗ can match zero or more times r

Why? Knowing how to match regular expressions and strings fast will let you
solve a lot of problems that vex other humans. Regular expressions are one of
the fastest and simplest ways to match paĴerns in text, and are endlessly useful
for searching, editing and analysing text in all sorts of places. However, you
need to be fast, otherwise you will stumble upon problems such as recently
reported at

• http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
• https://vimeo.com/112065252
• http://davidvgalbraith.com/how-i-fixed-atom/

1

http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://vimeo.com/112065252
http://davidvgalbraith.com/how-i-fixed-atom/


Tasks (file re.scala)
(1a) Implement a function, called nullable, by recursion over regular expres-

sions. This function testwhether a regular expression canmatch the empty
string.

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

[1 Mark]

(1b) Implement a function, called der, by recursion over regular expressions.
It takes a character and a regular expression as arguments and calculates
the derivative regular expression.

der c (0) def
= 0

der c (1) def
= 0

der c (d) def
= if c = d then 1 else 0

der c (r1 + r2)
def
= (der c r1) + (der c r2)

der c (r1 · r2)
def
= if nullable(r1)

then ((der c r1) · r2) + (der c r2)
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

[1 Mark]

(1c) Implement the function simp, which recursively traverses a regular ex-
pression from inside to outside, and simplifies every sub-regular-expressions
on the left to the regular expression on the right, except it does not sim-
plify inside ∗-regular expressions.

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r
1 · r 7→ r
r + 0 7→ r
0+ r 7→ r
r + r 7→ r

2



For example
(r1 + 0) · 1+ ((1+ r2) + r3) · (r4 · 0)

simplifies to just r1. [1 Mark]

(1d) Implement two functions: The first, called ders, takes a list of characters as
arguments and a regular expression and buids the derivative as follows:

ders Nil (r) def
= r

ders c :: cs (r) def
= ders cs (simp(der c r))

The second, called matcher, takes a string and a regular expression as ar-
guments. It builds first the derivatives according to ders and at the end
tests whether the resulting redular expression canmatch the empty string
(using nullable). For example the matcher will produce true if given the
regular expression a · b · c and the string abc. [1 Mark]

(1e) Implement the function replace: it searches (from the left to right) in string
s1 all the non-empty substrings that match the regular expression—these
substrings are assumed to be the longest substrings matched by the reg-
ular expression and assumed to be non-overlapping. All these substrings
in s1 are replaced by s2. For example given the regular expression

(a · a)∗ + (b · b)

the string aabbbaaaaaaabaaaaabbaaaabb and replacement string c yields
the string

ccbcabcaccc

[2 Mark]

Part 2 (4 Marks)
Coming soon.

3


