
PEP Scala (2)
Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)

Slides & Code: KEATS

Office Hours: Thursdays 12:00 – 14:00
Additionally: (for Scala) Tuesdays 10:45 – 11:45

PEP (Scala) 02, King’s College London – p. 1/11

My Scala Version

$ scala

Welcome to Scala 2.13.1 (Java HotSpot(TM)
64‐Bit Server VM, Java 9). Type in expressions
for evaluation. Or try :help.

scala>

With older versions you will get strange results with my
reference implementation.

PEP (Scala) 02, King’s College London – p. 2/11

Reference Implementation
Keep your implementation and my reference
implementation separate.

$ scala ‐cp collatz.jar

scala> CW6a.collatz(6)
res0: Long = 8

scala> import CW6a._
scala> collatz(9)
res1: Long = 19

PEP (Scala) 02, King’s College London – p. 3/11

Preliminary Part 7

overlap(d1, d2) =
d1 · d2

max(d2
1, d2

2)

where d21 means d1 · d1 and so on

PEP (Scala) 02, King’s College London – p. 4/11

Assignments
Don’t change anything with the templates!

Avoid at all costs:
var
return
ListBuffer
mutable
.par

“Scala — Slowly compiled academic language”
— a joke(?) found on Twitter

PEP (Scala) 02, King’s College London – p. 5/11

Assignments
Don’t change anything with the templates!

Avoid at all costs:
var
return
ListBuffer
mutable
.par

“Scala — Slowly compiled academic language”
— a joke(?) found on Twitter

PEP (Scala) 02, King’s College London – p. 5/11

Email: Hate ’val’
Subject: Hate ’val’ 01:00 AM

Hello Mr Urban,

I just wanted to ask, how are we suppose to work with
the completely useless val, that can’t be changed ever?
Why is this rule active at all? I’ve spent 4 hours not
thinking on the coursework, but how to bypass this
annoying rule. What’s the whole point of all these
coursework, when we can’t use everything Scala gives
us?!?

Regards.
«deleted»

PEP (Scala) 02, King’s College London – p. 6/11

Par: Intersections

PEP (Scala) 02, King’s College London – p. 7/11

A

A = {1, 2, 3, . . . , 1000}

B

B = {1, 5, 9, 13, . . . , 997}

A B

How many elements are in A ∩ B?

For-Comprehensions Again

for (n <‐ List(1, 2, 3, 4, 5)) yield n * n

List(1, 4, 9, 16, 25)n * n:

This is for when the for-comprehension
yields / produces a result.

PEP (Scala) 02, King’s College London – p. 8/11

For-Comprehensions Again

for (n <‐ List(1, 2, 3, 4, 5)) yield n * n

List(1, 4, 9, 16, 25)n * n:

This is for when the for-comprehension
yields / produces a result.

PEP (Scala) 02, King’s College London – p. 8/11

For-Comprehensions Again

for (n <‐ List(1, 2, 3, 4, 5)) yield n * n

List(1, 4, 9, 16, 25)n * n:

This is for when the for-comprehension
yields / produces a result.

PEP (Scala) 02, King’s College London – p. 8/11

For-Comprehensions Again

for (n <‐ List(1, 2, 3, 4, 5)) yield n * n

vs

for (n <‐ List(1, 2, 3, 4, 5)) println(n)

The second version is in case the for does not produce
any result.

PEP (Scala) 02, King’s College London – p. 9/11

Why Scala? No null!
You can avoid null:

PEP (Scala) 02, King’s College London – p. 10/11

“I call it my billion-dollar mistake. It was the invention of the null
reference in 1965. At that time, I was designing the first
comprehensive type system for references in an object oriented
language (ALGOLW). My goal was to ensure that all use of
references should be absolutely safe, with checking performed
automatically by the compiler. But I couldn’t resist the
temptation to put in a null reference, simply because it was so
easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused
a billion dollars of pain and damage in the last forty years.” Sir
Tony (Hoare)

Questions?

My Office Hours: Thursdays 12 – 14
And specifically for Scala: Tuesdays 10:45 – 11:45

PEP (Scala) 02, King’s College London – p. 11/11

